

Delphi XE

IntraWeb XI
Development

Delphi XE, IntraWeb XI (VCL for the Web)
1th EDITION for Bob Swart <Bob@eBob42.com>

Bob Swart (aka Dr.Bob)
Bob Swart Training & Consultancy (eBob42)

http://www.eBob42.com

 Delphi Win32 Web Development

Bob Swart (Bob@eBob42.com) - ii - February 2011

 Table of Contents
1. VCL for the Web / IntraWeb XI ...1

IntraWeb XI 11.x and Delphi XE .. 1
IDE Support... 1
Discontinued Features .. 1
IntraWeb XI Features ... 2
Uninstall Previous Version ... 3
Installing IntraWeb XI .. 5
IntraWeb License Keys.. 11

Summary .. 12

2. IntraWeb XI Applications..13
IWDemo Project Source .. 14

GUI Mode .. 15
Service Mode ... 16

Server Controller.. 17
TIWServerController Properties.. 19
AllowMultipleSessionsPerUser .. 20
AppName .. 20
AuthBeforeNewSession ... 20
Auther .. 20
BoundIP .. 22
CacheDir ... 22
CacheExpiry .. 22
CharSet... 22
ComInitialization .. 22
Compression.. 22
ContentFiles .. 23
DebugHTML ... 24
Description .. 24
DisplayName ... 24
EnableImageToolbar ... 24
ExceptionDisplayMode .. 24
FilesDir ... 24
HistoryEnabled... 24
HTMLHeaders... 24
InternalFilesDir .. 24
InternalFilesURL... 25
JavascriptDebug... 25
Log... 25
MasterTemplate ... 25
PageTransitions.. 25
Port .. 25
RedirectMsgDelay... 25
ServerResizeTimeout .. 26
SessionTimeout.. 26
ShowLoadingAnimation ... 26
SSLOptions.. 26
StyleSheet .. 26
TemplateDir... 26
TimeoutResponse ... 26

TIWServerController Events .. 27
OnAfterDispatch... 27
OnAfterRender ... 27

 Delphi Win32 Web Development

 Bob Swart Training & Consultancy - iii - www.drbob42.com

OnBackButton.. 27
OnBeforeDispatch... 28
OnBeforeRender... 28
OnCloseSession.. 28
OnException .. 28
OnGetSessionID... 29
OnNewSession ... 29

IntraWeb TIWApplication Properties ... 29
ActiveForm .. 30
ActiveFormCount.. 30
AppID ... 30
ApplicationURL... 30
Browser .. 30
Data ... 30
FormAction .. 30
FormCount .. 30
Forms ... 30
IP ... 30
IsCallback ... 30
LastAccess... 30
RedirectURL... 30
ReferringURL ... 31
Request .. 31
Response .. 31
RunParams.. 31
SecureMode... 31
SessionTimeout.. 31
Terminated.. 31
TerminateMessage ... 31
TerminateURL.. 31
TrackID... 31
UserCacheDir... 32

TIWApplication Methods.. 32
GoToURL ... 32
MarkAccess.. 32
SendFile.. 32
SendStream .. 32
ShowMessage .. 32
Terminate ... 33
TerminateAndRedirect .. 33

TIWAppForm.. 33
IntraWeb TIWPageForm .. 33

ActiveControl ... 35
Background ... 35
ExtraHeader .. 35
HandleTabs ... 35
HiddenFields .. 35
JavaScript ... 35
LayoutMgr ... 35
LinkColor... 35
ShowHint .. 35
StyleSheet .. 35
SupportedBrowsers .. 35
TextColor .. 35
Title.. 35
VLinkColor ... 35

 Delphi Win32 Web Development

Bob Swart (Bob@eBob42.com) - iv - February 2011

TIWPageForm Events.. 36
OnAfterRender ... 36
OnCreate... 36
OnDefaultAction ... 36
OnDestroy ... 36
OnRender.. 36
Designing IntraWeb Page Form.. 37

IW Standard Controls ... 37
TIWApplet ... 37
TIWButton... 38
TIWCheckBox .. 39
TIWComboBox ... 40
TIWEdit... 41
TIWFile ... 41
TIWFlash... 41
TIWHRule.. 42
TIWImage ... 42
TIWImageFile .. 42
TIWImageButton.. 42
TIWList ... 42
TIWLabel... 42
TIWListbox .. 43
TIWLink .. 43
TIWMemo.. 44
TIWMenu... 44
TIWProgressBar ... 44
TIWRadioGroup.. 45
TIWRectangle .. 45
TIWRegion... 45
TIWText .. 45
TIWTimer .. 45
TIWGrid .. 46
TIWTreeview ... 47
TIWTreeViewItem .. 47
TIWURL... 47
TIWURLWindow.. 47
TIWMPeg... 47
TIWQuickTime ... 47
TIWCalendar.. 47

Multiple IntraWeb Application Forms .. 48
Final Release ... 48
Passing Information Around .. 49
Getting Back.. 49

State Management ... 50
UserSession... 50
Extending User Session... 51
Using User Session... 51

Summary .. 52

3. IntraWeb and Databases...53
Data Module .. 53

TSQLConnection... 54
TSQLDataSet ... 55

IW Data Controls.. 56
TIWDBCheckBox .. 56
TIWDBComboBox ... 56
TIWDBEdit... 56

 Delphi Win32 Web Development

 Bob Swart Training & Consultancy - v - www.drbob42.com

TIWDBGrid .. 56
TIWDBImage ... 56
TIWDBLabel... 56
TIWDBListbox .. 57
TIWDBLookupListbox .. 57
TIWDBLookupCombobox ... 57
TIWDBFile ... 57
TIWDBMemo.. 57
TIWDBNavigator .. 57
TIWDBText.. 57
TIWDBRadioGroup.. 57

Continued Demo .. 58
TIWDBGrid Usage... 62

Sharing VCL data modules with VCL for the Web 67
Pool Data Connections .. 68

DatamoduleUnit ... 69
ServerController... 69
Using Data Pooling ... 71
Custom Data Pooling .. 72

Summary .. 72

4. IntraWeb and AJAX...73
AJAX = Asynchronous... 73

OnAsync.. 73
OnAsync Events ... 75
EventParams ... 76
Working with EventParams.. 78
OnAsync and Visible ... 79
OnAsync and Disable .. 79

Summary .. 80

5. IntraWeb and iPhone / iPad..81
TMS IntraWeb iPhone Controls Pack ... 81

TTIWiPhoneButton.. 83
TTIWiPhoneEmailLabel .. 83
TTIWiPhoneFooter .. 83
TTIWiPhoneGeolocation .. 84
TTIWiPhoneHeader ... 84
TTIWiPhoneList .. 84
TTIWiPhoneLocationLabel .. 84
TTIWiPhoneMenu ... 84
TTIWiPhoneOnOffButton ... 84
TTIWiPhonePageFlip ... 85
TTIWiPhonePhoneLabel ... 85
TTIWiPhoneRegion ... 85
TTIWiPhoneScrollRegion.. 85
TTIWiPhoneSMSLabel ... 85
TTIWiPhoneStyle.. 85
TTIWiPhoneTrackbar... 85

TMS iPhone Controls Demo.. 86
Registered Users .. 95

Summary .. 96

6. IntraWeb Custom Components..97
IntraWeb Controls .. 97

Custom Components... 99
Packages... 100
TIEuroComboBox ... 102

 Delphi Win32 Web Development

Bob Swart (Bob@eBob42.com) - vi - February 2011

TIWRequiredEdit .. 104
Installation and Usage .. 105

Summary .. 105

7. IntraWeb Testing Framework..107
Sample Application... 107

Manual Test... 108
VCL for the Web Test Project ... 109

Sharing Main Form ... 110
Writing Test Code... 110
More Tests... 117

ITestSuite ... 118
Summary .. 119

8. IntraWeb Deployment...121
Project Targets... 121

StandAlone Application ... 121
Service Application ... 122
ISAPI Extension ... 122

Multiple Project Targets .. 122
Windows Server 2003... 123

Enabling ISAPI / CGI .. 123
Virtual Directory... 124

Deployment on Windows Server 2008 and IIS7 127
IntraWeb Deployment... 132

Files, Templates and Cache ... 132
Database Drivers.. 132
DBX4 Drivers ... 132
DBX Trace / Pool Connections.. 133
Core Lab DBX4 Drivers.. 133

Summary .. 134

The information in this courseware manual is © 2001-2011 by drs. Robert E.
(Bob) Swart of Bob Swart Training & Consultancy. All Rights Reserved.

The information in this courseware manual is presented to the best of my knowledge at
the time of writing. However, in case of errors or omissions, I welcome your feedback
or comments (by e-mail) as Bob Swart Training & Consultancy cannot be held
responsible for any damage that results from using the information in this manual or
the example source code snippets. Thanks in advance for your understanding.

Delphi Win32 Web Development 3. VCL for the Web / IntraWeb

 Bob Swart Training & Consultancy - 1 - www.drbob42.com

1. VCL for the Web / IntraWeb XI
IntraWeb is a third-party product which has been included with Delphi since version 7,
has been renamed to “VCL for the Web” since Delphi 2007, and offers a RAD way to
build Win32 web applications, reusing data access components and data modules when
needed. Including support for AJAX and custom controls, and third-party controls from
TMS Software to build even web applications for the iPhone and iPad for example.

In this first section, I will cover how to correctly install IntraWeb XE on your machine
and integrate it with your copy of Delphi. But we also examine the different editions and
features of IntraWeb XI.

IntraWeb XI 11.x and Delphi XE
Since Delphi 7, IntraWeb ships as part of Delphi in the box. Delphi 7 came with
IntraWeb 5.0 for example (and also included a free upgrade to IntraWeb 5.1 – but after
that you had to purchase a license for further updates). Delphi XE comes with IntraWeb
XI version 11.0.0 in the box. With Delphi XE Professional you get IntraWeb XI Personal,
and with Delphi XE Enterprise you get IntraWeb XI Standard. Note that these are not
the full “ultimate” versions of IntraWeb.
Also, even if you want to keep using the bundled Personal or Standard version, it is
strongly recommended to register yourself at the AtoZedSoftware website to get your
free key which will entitle you to free updates of your edition of IntraWeb XI –not the
major upgrades – and the bundled features, but not the full ultimate functionality.

See http://www.atozed.com/IntraWeb/FeatureMatrix.aspx for an overview of the
features found in IntraWeb XI, which are also briefly summarised here.

IDE Support
IntraWeb XI is supported by Delphi 7, 2006, 2007, 2009, 2010 and Delphi XE:

 Evaluation Personal Standard Ultimate
Supported
Environments

Delphi 7, 2006,
2007, 2009,
2010, XE

Delphi 7, 2006,
2007, 2009,
2010, XE

Delphi 7, 2006,
2007, 2009,
2010, XE

Delphi 7, 2006,
2007, 2009,
2010, XE

Bundled With available as
free download

Delphi XE or
RAD Studio XE
Professional

Delphi XE or
RAD Studio XE
Enterprise /
Architect

only available
as separate
purchase

See the above URL for pricing and special offers with regards to the Personal, Standard
and Ultimate editions of IntraWeb XI. In this courseware manual, I will use Delphi XE
Enterprise in combination with IntraWeb XI Ultimate.

Discontinued Features
For people who worked with previous versions of IntraWeb, it may be important to note
the features and functionality which are no longer found in IntraWeb XI.

Page Mode has been deprecated, and replaced by Integrated Page Mode. Unfortunately,
while Integrated Page Mode offers new capabilities, the “old” Page Mode options are no
longer possible. So, if you have existing WebBroker Page Mode application using
IntraWeb 10.x or lower, you may need to maintain them using the older version of
IntraWeb (potentially on a different machine if you also want to use IntraWeb XI in the
same version of Delphi).

Delphi Win32 Web Development 3. VCL for the Web / IntraWeb

Bob Swart (Bob@eBob42.com) - 2 - February 2011

Support for WAP and HTML 3.2 is also removed from IntraWeb XI. As a result, there is
now only one main form type: for HTML 4 and higher. If you still have WAP or HTML 3.2
web applications using IntraWeb 10.x or lower, you may need to maintain them using
the older version of IntraWeb (potentially on a different machine if you also want to use
IntraWeb XI in the same version of Delphi).
To be honest, this feature is probably not used a lot anymore, as most mobile devices
support a rich set of HTML, and we’ll see in the section on IntraWeb and iPhone / iPad
development for example.

As another consequence of this, support for older browser has also been removed from
IntraWeb XI. The (minimum version of) supported browsers are as follows (no specific
support for Opera exists anymore):

- FireFox 3
- Internet Explorer 7
- Chrome, Safari

The Client Side components, like Client Side DataSets Client Side Charts, and DynGrid
have been removed from IntraWeb XI. These features are no longer used, and can be
replaced with AJAX functionality.
On a similar note, the feature using partial updates has been deprecated, and should be
replaced with full use of AJAX now. AJAX support was introduced in IntraWeb 9.x, and
there should be no use of umPartial – if you still use it, then just replace it by OnAsync
event handlers instead for much better results.

Support for Apache DSO files is discontinued for two reasons: first of all, Delphi hasn’t
been offering Apache support in WebBroker Wizards for some time (although it’s
unofficially still available in the source code units), and Apache can now run ISAPI DLLs
so there is no need for special DSO support from IntraWeb.

The session in IntraWeb application used to be tracking using the SessionID in the URL,
a hidden field, or using a cookie (the tmURL, tmHidden and tmCookie options).
IntraWeb XI will support cookies for session tracking, and this has also lead to the new
feature called Integrated Page Mode and URL mapping.
As a consequence of using cookies to track the session, it may no longer be possible to
allow a single user to run multiple sessions in separate tabs or windows (since the
cookie may be shared by these tabs). For this purpose, IntraWeb XI introduces the
property AllowMultipleSessionsPerUser in the ServerController, which will ensure that
each browser window or tab can have its own unique session cookie (so you can have
multiple user sessions).

IntraWeb XI Features
The following table lists the features of IntraWeb and the four different editions.

 Evaluation Personal Standard Ultimate
Standalone Server Deployment Yes Yes Yes Yes
Service Deployment Yes Yes
ISAPI Deployment Yes
SSL Encryption Yes
IP Binding Yes
Priority Support Yes
Access to (most) Source Code Yes
Concurrent Session Limit 5
Application Mode Yes Yes Yes Yes
XI Authentication Yes Yes
Session Inactivity Timeout Config 20 mins 20 mind Config

Delphi Win32 Web Development 3. VCL for the Web / IntraWeb

 Bob Swart Training & Consultancy - 3 - www.drbob42.com

Even if you use the bundled edition, you could decide to purchase IntraWeb XI Ultimate.
For this courseware manual, I’ve used IntraWeb XI Ultimate version 11.0.32.

Uninstall Previous Version
Before you install the latest version of IntraWeb, you should make sure the bundled
edition is uninstalled from Delphi (or not installed in the first place). If you are
uncertain whether or not you included IntraWeb (VCL for the Web) in the installation of
Delphi XE, or you installed it and need to remove it, then you can start the “Modify,
Repair, Uninstall” item from the Embarcadero RAD Studio XE program group. This will
call the C:\ProgramData\{7DE921C9-42C8-4DA3-8A44-043C3349FD1D}\Setup.exe and
present you with the RAD Studio XE Maintenance dialog. Here, you can select Modify in
order to modify the existing installation:

Click on Next, and after you’ve selected Delphi XE (and optionally C++Builder XE if your
serial number also enabled that) in the second page, you can click on Next again to
enter the third page of the wizard where you can select the languages that will be
installed on your machine.

The next page will show the features of Delphi XE that are included with your edition
(the list of features will differ between Delphi XE Professional and Delphi XE Enterprise).
Make sure that the VCL for the Web item is unselected, so it will be removed from your
system if it was already installed. If the red cross is already showing, to indicate that
it’s not installed on your machine at this time, then you can cancel the dialog.
Otherwise, you need to press Next again and continue to allow the installer to modify
your installation of Delphi XE and remove the bundled version of IntraWeb XI from your
disk.

Delphi Win32 Web Development 3. VCL for the Web / IntraWeb

Bob Swart (Bob@eBob42.com) - 4 - February 2011

After this process has finished, you should check the Windows\System32 directory to
make sure there are no IntraWeb_110_150.bpl and IntraWebDB_110_150.bpl packages
left.
Same with the C:\Program Files\Embarcadero\RAD Studio\8.0\bin directory, which
should no longer contain the dclIntraweb_110_150.bpl design time package.
And the C:\Program Files\Embarcadero\RAD Studio\8.0\lib\win32\release directory
should no longer contain any IW*.dcu or IW*.res files.

If one or more of these conditions fail, and you still find evidence of the bundled version
of IntraWeb XI on your machine, then you could either try to uninstall it again (using
the above steps) or remove the files manually from your disk – at your own risk, of
course, since uninstalling should remove them.

However, the best way to remove the bundled version of IntraWeb XI from your
installation of Delphi XE is simply to install Delphi XE on a clean machine without having
selected IntraWeb XI.

Regardless of how you removed the bundled (or previous) version of IntraWeb XI from
your machine, you can then download the latest version of IntraWeb XI from the
AtoZedSoftware website at http://www.atozed.com/IntraWeb/Download/Download.aspx.
At the time of writing, this is IntraWeb XI 11.0.32.

Delphi Win32 Web Development 3. VCL for the Web / IntraWeb

 Bob Swart Training & Consultancy - 5 - www.drbob42.com

Installing IntraWeb XI
The IntraWeb XI installer recommends to close all other application – at least Delphi
must be closed before you install.

The License Agreement of IntraWeb reminds you that the Personal, Standard and
Ultimate licenses are single user licenses only.

Delphi Win32 Web Development 3. VCL for the Web / IntraWeb

Bob Swart (Bob@eBob42.com) - 6 - February 2011

The next step gives some important installation notices, which include a note about
Windows firewall which may give a warning when you start Delphi or an IntraWeb
application written in Delphi.

The next page can be used to specify the location of IntraWeb XI. Note that it’s no
longer installed by default in the Program Files directory, but rather in the
C:\Users\CURRENTUSER\AppData\Roaming\IntraWeb XI (where CURRENTUSER is the
name of the current user, obviously, or “Bob” in my case).

Delphi Win32 Web Development 3. VCL for the Web / IntraWeb

 Bob Swart Training & Consultancy - 7 - www.drbob42.com

Depending on the versions of Delphi on your machine, the next page will give you the
option to select the supported versions of Delphi; Delphi 7, Delphi 2006, Delphi 2007,
Delphi 2009, Delphi 2010 or Delphi XE.
Since I still want to use IntraWeb 10.x with Delphi 2010 (because of some legacy
IntraWeb applications), I only select Delphi XE as target to install IntraWeb XI for.

The start menu folder is called IntraWeb by default.

Delphi Win32 Web Development 3. VCL for the Web / IntraWeb

Bob Swart (Bob@eBob42.com) - 8 - February 2011

The next page requires your IntraWeb XI key. This key starts with +008 (and not +007
which was used for previous versions of IntraWeb). Even as a bundled user, you must
request your key at http://www.atozed.com/IntraWeb/Download/FreeKeyRequest.aspx
by downloading http://downloads.atozed.com/intraweb/KeyRequest_RadStudioXE1.zip

Below is the overview of the settings of IntraWeb XI Ultimate 11.0.23 which was
installed on my machine with Delphi XE Enterprise.

Delphi Win32 Web Development 3. VCL for the Web / IntraWeb

 Bob Swart Training & Consultancy - 9 - www.drbob42.com

Installation will only take a few minutes.

After installation is competed, you will see some post-installation notes. Most of these
are outdated. There are only Win32 demos, since .NET is no longer supported for
example.

This information should also mention http://iwxidemos.codeplex.com/ as location for
some IntraWeb demos.

Delphi Win32 Web Development 3. VCL for the Web / IntraWeb

Bob Swart (Bob@eBob42.com) - 10 - February 2011

After installing IntraWeb XI, you can check the status and version by starting Delphi XE
again, and checking the About Box.

Delphi Win32 Web Development 3. VCL for the Web / IntraWeb

 Bob Swart Training & Consultancy - 11 - www.drbob42.com

IntraWeb License Keys
After the installation of IntraWeb XI, if you entered your correct license key numbers
during installation, you should find a file called IWLicenseKey.pas in the different library
directories of C:\Users\Bob\AppData\Roaming\IntraWeb XI\. For my Delphi XE
instllation, this means C:\Users\Bob\AppData\Roaming\IntraWeb XI\LibXE.

If you didn’t enter the license key during the installation of the full version, or if you
started with an evaluation version and want to turn it into a full version (or if you want
to re-start an expired subscription), you need to generate the IWlicenseKey.pas file
yourself. This can be done using the LicenseRegistration.exe application that is included
with IntraWeb in the C:\Users\Bob\AppData\Roaming\IntraWeb XI\ directory. When you
run LicenseRegistration, you only have to paste the Win32 license key:

This application will generate the IWLicenseKey.pas files for you. It will have the
following layout (so you can always reproduce this file yourself if you have your key):

unit IWLicenseKey;
interface

implementation
uses
 IWGlobal;

initialization
 SetLicenseKey(
 '+008'+
 #########
 #########
end.

Delphi Win32 Web Development 3. VCL for the Web / IntraWeb

Bob Swart (Bob@eBob42.com) - 12 - February 2011

Summary
In this section, we have examined the different editions and features of IntraWeb XI.
We have covered how to correctly uninstall a previous version of IntraWeb XI, and how
to install IntraWeb XE on your machine and integrate it with your copy of Delphi.

Delphi Win32 Web Development 5. IntraWeb Application Mode

 Bob Swart Training & Consultancy - 13 - www.drbob42.com

2. IntraWeb XI Applications
IntraWeb XI can be used to design WYSIWYG web applications. The best way to
demonstrate this, it to start Delphi XE, do File | New - Other, go to the VCL for the Web
category in the Object Repository, where we can find the two IntraWeb wizards (and
three disabled icons):

Double-click on the VCL for the Web Application Wizard to start the dialog below.

Delphi Win32 Web Development 5. IntraWeb Application Mode

Bob Swart (Bob@eBob42.com) - 14 - February 2011

Looking at the dialog, you may wonder if there are only two possible targets, and no
more support for a Windows Services. Looks are deceiving, however, since the
standalone application can be turned into a Windows Service (and is in fact a Windows
Service by running it with the /GUI command-line option.
The ISAPI Extension option is available, but can only be deployed for developers using
the IntraWeb XI Ultimate license. Be aware of that fact when building a web application,
as the ISAPI deployment will fail when using the Personal or Standard edition of
IntraWeb. The option to use an ISAPI Threadpool is only relevant when producing an
ISAPI DLL for IIS, and disabled otherwise. The choice for pooling data connections will
be relevant in the next section (about IntraWeb and Databases) and can be left
unchecked for now.
Specify IWDemo as Project Name, which will produce a new IntraWeb XI project in the
C:\Users\Bob\Documents\RAD Studio\Projects\IWDemo directory:

If you click on OK, then a new IntraWeb standalone application project will be created,
as well as three additional units - one for the Server Controller in ServerController.pas,
one for the User Session in UserSessionUnit.pas, and one for the IntraWeb Application
Form, which can be saved in IWFormMain.pas.

IWDemo Project Source
Let’s first examine the generated IWDemo project source code in IWDemo.dpr. Do
Project | View Source to see the following code:

program IWDemo;

uses
 Forms,
 IWStart,
 UTF8ContentParser,
 IWFormMain in 'IWFormMain.pas' {IWForm1: TIWAppForm},

Delphi Win32 Web Development 5. IntraWeb Application Mode

 Bob Swart Training & Consultancy - 15 - www.drbob42.com

 ServerController in 'ServerController.pas'
 {IWServerController: TIWServerControllerBase},
 UserSessionUnit in 'UserSessionUnit.pas' {IWUserSession: TIWUserSessionBase};

{$R *.res}

begin
 TIWStart.Execute(True);
end.

There is no more IWMain unit or IWInitService unit required, and also no Application
that needs to be initialized and run. Instead, this has been replaced by an Execute call
to TIWStart, from the IWStart unit.

GUI Mode
The argument True specifies that we want to enforce the IWDemo application to start in
GUI mode. Note that it’s a defeault argument, and the default is False. Meaning the
application should not be forced to start in GUI mode, in which case we need to pass
the /GUI command-line flag to the IWDemo.exe in order to start it in GUI mode:

IWDemo.exe /GUI

The option GUI is not case sensitive, so we can also pass /gui for example.

As soon as we run the IWDemo application, in GUI mode, we may get a message with a
Windows Security Alert dialog, about the feature that has blocked some features of the
IntraWeb application:

Obviously, we want to allow the IWDemo.exe application to continue running and
operating, so click on Allow access to enabled the IWDemo executable to start the HTTP
server inside it.

Delphi Win32 Web Development 5. IntraWeb Application Mode

Bob Swart (Bob@eBob42.com) - 16 - February 2011

The IWDemo executable will show up as a little form application, with a number of
options to start a specific browser from the development machine. However, we can
directly connect to it from any other machine (connected to this particular development
or deployment machine).
We can also see the registration information about this Ultimate version of IntraWeb XI
as registere to Bob Swart.

We can also see the VCL for the Web version used for the application (11.0.32 in this
case) as well as the HTTP Port that the application is listening to.

Service Mode
So far, we’ve seen the effect of explicitly passing True to the call to TIWStart.Execute.
The alternative, passing False, means that the application will be started in Service
mode, which by default does nothing unless we pass the /install command line option to
actually install the service:

IWDemo.exe /install

Which will install the IWDemo.exe as Windows Service, but will not automatically start
the service. The result is a dialog in case installing the service was successful:

If you do not see the dialog, then make sure you run the IWDemo.exe with the “Run as
Administrator” option, which is required in Windows Vista and later.

In order to uninstall the service we need to call IWDemo.exe again with the /uninstall
option. However, if we want to start the IWDemo service, we need to start it explicitly.
Using the Computer Management Console, we can locate the MyApp IntraWeb (VCL for
the Web) Application.

Delphi Win32 Web Development 5. IntraWeb Application Mode

 Bob Swart Training & Consultancy - 17 - www.drbob42.com

Note that the Startup Type is set to Automatic, so a reboot would automatically start it
for us. Also note that the name MyApp is not very descriptive, so we’ll change that in a
moment.
Apart from using the Computer Management Console, we can also start the service from
the commandline, provided we know the name of the service (which is MyApp in this
case).

Net start MyApp

And we can stop the service again using “net stop MyApp”. Note that uninstalling the
service will not stop it, but will delete the service as soon as it’s stopped.

Server Controller
Let's now start to configure the properties of the Server Controller in unit
ServerController.pas. It looks like an empty form, but is in fact more like an empty data
module – we can place non-visual components on it.

The source code for the ServerController is as follows:

unit ServerController;
interface
uses
 SysUtils, Classes, IWServerControllerBase, IWBaseForm, HTTPApp,
 // For OnNewSession Event
 UserSessionUnit, IWApplication, IWAppForm;

Delphi Win32 Web Development 5. IntraWeb Application Mode

Bob Swart (Bob@eBob42.com) - 18 - February 2011

type
 TIWServerController = class(TIWServerControllerBase)
 procedure IWServerControllerBaseNewSession(ASession: TIWApplication;
 var VMainForm: TIWBaseForm);
 private

 public

 end;

 function UserSession: TIWUserSession;
 function IWServerController: TIWServerController;

implementation
{$R *.dfm}

uses
 IWInit, IWGlobal;

function IWServerController: TIWServerController;
begin
 Result := TIWServerController(GServerController);
end;

function UserSession: TIWUserSession;
begin
 Result := TIWUserSession(WebApplication.Data);
end;

procedure TIWServerController.IWServerControllerBaseNewSession(
 ASession: TIWApplication; var VMainForm: TIWBaseForm);
begin
 ASession.Data := TIWUserSession.Create(nil);
end;

initialization
 TIWServerController.SetServerControllerClass;
end.

When a new session is started, then the OnNewSession event handler will make sure
that a new UserSession is created, of type TIWUserSession, derived from
TIWUserSessionBase:

The two global functions UserSession and ISServerController return the current user
session (from the current thread) and the global server controller instance.

To configure the ServerController itself, we should view the Design of the
TIWServerController and look at the properties in the Object Inspector. Start by giving
the AppName property a more sensible value like IntraWebDemo (instead of MyApp).
The AppName must get a unique value (i.e. a name not used by any others on the same
machine) if you want to install the IntraWeb application as a Windows service.

Delphi Win32 Web Development 5. IntraWeb Application Mode

 Bob Swart Training & Consultancy - 19 - www.drbob42.com

TIWServerController Properties
Each IntraWeb application has one and only one ServerController. The ServerController
has a number of properties that control the IntraWeb application.

We will examine the most important ServerController properties in some more detail.

Delphi Win32 Web Development 5. IntraWeb Application Mode

Bob Swart (Bob@eBob42.com) - 20 - February 2011

AllowMultipleSessionsPerUser
The sessions in IntraWeb are cookie based, which means they no longer use hidden
fields or the URL to display session information. This also means that a new browser tab
of window shares the same IntraWeb session for a user.
If you want the browser tabs to have different user sessions, then you must use and set
the AllowMultipleSessionsPerUser property to True. This will ensure that the URL will
now again contain the Session ID. The session cookie is still used, but with its path set
to /SessionID to allow multiple cookies to be used – each by one browser tab or window.

AppName
The AppName String property should uniquely identify your IntraWeb application. This
is the name by which the IntraWeb application is registered as a Windows Service,
hence the need to be unique. By default it's set to MyApp, which we saw in the screen
shot of the Computer Management Console. Using MyApp as value for the AppName
property is not a good idea if you build and install more than just one IntraWeb
application, so make sure to change it into something else. In the screenshot on the
previous page, I’ve already changed it to IntraWebDemo by the way.

AuthBeforeNewSession
The AuthBeforeNewSession Boolean property (set to false by default) specifies whether
authentication checks should be performed before starting a new session (with data
modules etc.). The default setting of AuthBeforeNewSession is false, which means that
by default the authentication will take place after the session is created. This means
that if you get an unauthorised attack with many login attempts, then sessions will be
created for a failed authorisation request, which can be a performance hit. If you set
AuthBeforeNewSession to true then the benefit is that your performance will not suffer
under an intruder attack (with no unnecessary sessions), but the downside is that we
cannot use the session with our data module to perform the authentication (for example
in the OnCheck event of the TIWAutherEvent component).
So it’s a trade-off between a potential performance hit (creating a session without
knowing for sure the user can login to the system), and ease of use (being able to use
the session and data module for the authentication itself).

Auther
Authentication itself is no longer done with the AuthList property or the
OnBeforeAuthenticate event, but is now done – in IntraWeb XI Ultimate only - using the
Auther property which can be assigned to an instance of a TIWAuther descendent class.
The TIWAuther base class is defined as follows:

type
 TAutherPolicy = (apRestrictAll, apRestrictNone);

 TIWAuther = class(TComponent)
 private
 FAutherPolicy: TAutherPolicy;
 procedure SetAutherPolicy(const Value: TAutherPolicy);
 public
 function Check(const aUser: string; const aPass: string): boolean;
 virtual; abstract;
 constructor Create(AOnwer: TComponent); override;
 published
 property AutherPolicy: TAutherPolicy read FAutherPolicy
 write SetAutherPolicy;
 end;

Delphi Win32 Web Development 5. IntraWeb Application Mode

 Bob Swart Training & Consultancy - 21 - www.drbob42.com

Using the AutherPolicy we can specify if the IWAuther delegate should retrict it to all or
to none.

There are three kinds of TIWAuther derived components already contained with
IntraWeb XI Ultimate: TIWAutherList, TIWAutherEvent , and TIWAutherINI.
The TIWAutherList component has the AutherPolicy property set to apRestrictAll and
offers a List property of type TStrings to enter a list of usernames and passwords,
similar to what the AuthList property offered in earlier versions of IntraWeb.
To allow a user guest with password guest, and a user Bob with password Swart, we can
fill the following list:

The TIWAutherEvent component has the AutherPolicy property set to apRestrictAll
and offers an OnCheck event handler where we can implement our authentication
check, for example hardcoded as follows:

function TIWServerController.IWAutherEvent1Check(const aUser,
 aPass: string): Boolean;
begin
 Result := (aUser = 'Bob') and (aPass = 'Swart');
end;

Note that this is an event handler were we could decide to use the UserSession for
example to get access to a database table. In that case, the AuthBeforeNewSession
property must be set to False (the default value) to ensure that the session exists if we
want to use it for the authentication.

The TIWAutherINI component has the AutherPolicy property set to apRestrictAll and
offers the ability to use a .ini file as source for the users and passwords. The .ini file
must be called #Auth.ini (with a # as first character), and the contents can be as
follows for one user Bob with password Swart:

[Bob]
Password=Swart

Note that the passwords are stored unencrypted. But since the #Auth.ini file starts with
the # character, the Integrated Page Mode feature of IntraWeb XI will not server this
file so visitors will not be able to “request” the .ini file.

Delphi Win32 Web Development 5. IntraWeb Application Mode

Bob Swart (Bob@eBob42.com) - 22 - February 2011

BoundIP
The BoundIP property specifies the IP address that the server will be bound to. Mainly
useful if the IntraWeb application happens to run on a machine with more than one
network card for example,and you want the IntraWeb application only to respond to
incoming requests from one of these network cards.

CacheDir
This property can be used to specify the path where the IntraWeb application can store
temporary files like HTML and images. You should leave it empty, so IntraWeb will
determine the location of the CacheDir by itself.
If you want to control the location of the CacheDit, then be aware that the full contents
of the CacheDir may be deleted by the IntraWeb application at any time. So if you place
your own files in it, do not expect them to last. And certainly make sure not to point the
CacheDir to a location with important subdirectories, like C:\ for example.

CacheExpiry
This property specifies how many minutes (not hours), the temporary files will be kept
in the CacheDir.

CharSet
The CharSet is set to UTF-8 by default, which is the default Unicode encoding format for
the internet, so there is little reason to change that.

ComInitialization
The ComInitialization property of type TComInitialization (ciNone, ciNormal,
ciMultiThread) is needed when the application requires the use of (D)COM. Since
IntraWeb executes requests in different threads, each thread must make its own call to
CoInitialize.
By default this property is set to ciNone, to indicate that no COM support is required. If
you need COM support - for example if you want to connect to a DataSnap server - then
you need to set ComInitialization to ciNormal or ciMultiThreaded.
Personally, I’ve found no reason not to set it to ciMultiThreaded when working with COM
in one way or another inside an ISAPI DLL, although IIS 6 and higher may handle the
required ComInitialization already for you, and you should set it to ciNone (but it looks
like it’s ignored when set to some other value, so ciMultiThread won’t hurt either).

Compression
The Compression property of type TIWCompression is used to specify the level of HTML
compression used by the (output of the) IntraWeb application. By default, Compression
is not enabled, but we can set the Enabled subproperty to True in order to enable the
HTML Compression.
The Level subproperty controls the level of the compression in a range of 0..9, the
default Level is 6.
Note that in order to use compression, the zlib.dll must be deployed with your
application in the same directory (even if the zlib.dll can usually be found on your
system in the \Windows\System32 directory). Tests have indicated that the zlib.dll from
Windows XP works fine, but the zlib.dll from Windows Vista does not work with the
HTML Compression feature in IntraWeb.
You can download the zlib.dll from http://downloads.atozed.com/intraweb/zlib.zip to
make sure you have a version that will always work with your IntraWeb applications.

In order to get a feeling for the amount of HTML that is sent over the internet
connection, see the Sent information on the IntraWeb stand-alone application.

Delphi Win32 Web Development 5. IntraWeb Application Mode

 Bob Swart Training & Consultancy - 23 - www.drbob42.com

Without compression a given (large) form with a grid can produce several hundred KBs,
while the same form using compression can be shrunk down to less than a hundred KB.
This is of course a significant saving on the amount of HTML that is transferred over the
internet.
Note that most but not all browsers may support HTML compression. But browsers that
can decompress encoded content will request compressed files. Browsers that do not
understand compressed content will simply request and receive the files uncompressed,
not benefiting from the improved download times that content encoding compliant
browsers can offer.

ContentFiles
We can use the ContentFiles property to add a list of files, especially .js and .css files,
that will be added when rendering the page. Pseudo code from the TIWJQueryWidget
components shows the following implementation of RenderHTML (placed in comments):

function TIWJQueryWidget.RenderHTML(
 AContext: TIWBaseHTMLComponentContext): TIWHTMLTag;
var
 LPageContext: TIWPageContext40;
 I: Integer;
 LFile: string;
begin
 LPageContext := TIWPageContext40(AContext.PageContext);
 for I := 0 to ContentFiles.Count - 1 do begin
 LFile := ContentFiles[i];
 if AnsiPos('javascript:', LFile) > 0 then begin
 Delete(LFile, 1, 11);
 LPageContext.AddPreScriptFile(GServerController.FilesURL + LFile);
 end else if AnsiPos('css:', LFile) > 0 then begin
 Delete(LFile, 1, 4);
 LPageContext.AddLinkFile(GServerController.FileSURL + LFile)
 end;
 end;
 LPageContext.AddToOnReady(OnReady.Text);
 Result := HTMLTag;
end;

Delphi Win32 Web Development 5. IntraWeb Application Mode

Bob Swart (Bob@eBob42.com) - 24 - February 2011

DebugHTML
If you set the DebugHTML property to True, then HTML and JavaScript lines will end
with a line break, which makes the source inside a browser a bit easier to read (and
“debug”).

Description
The Description String property is used to contain the (internal) description of the
IntraWeb application. This value is used together with the AppName and DisplayName
when the IntraWeb application is registered as a Windows Service.

DisplayName
The Description String property is used to contain the DisplayName of the IntraWeb
application. This value is used together with the AppName and Description when the
IntraWeb application is registered as a Windows Service.

EnableImageToolbar
The EnableImageToolbar property can be used to enable the image toolbar which is
shown by Internet Explorer. By default, the property is set to False, so the image
toolbar will not be shown.

ExceptionDisplayMode
The EnableDisplayMode property controls how exceptions are presented to the enduser.
By default, exceptions will be shown in an Alert-style JavaScript dialog box, but the
alternative can be to show the exception in a new window, in the same window, or in
the same window frame.
Note that this is a single setting for the entire IntraWeb application (although you are
free to handle your own exceptions in a try-except block and present them to the
enduser in any way you want).

FilesDir
The FilesDir property specifies the path where the application files are stored during
execution. You should leave this property unassigned, unless you have a good reason to
change the default location.

HistoryEnabled
The HistoryEnabled property is set to false by default, and should be left alone. It
controls whether the browser should maintain history information, and the back and
forward buttons (which should not be used in combination with IntraWeb applications
due to the state decoded in the URL).

HTMLHeaders
The HTMLHeaders property can be used to insert additional HTML headers that will
appear in the <head>...</head> section of the generated HTML document. This is
related to the ContentFiles property if you want to insert CSS or JS contents directly
into the header of the generated page.

InternalFilesDir
The InternalFilesDir property has only effect for ISAPI applications, and specifies the
physical directory where internal files like JavaScript source files are loaded from. This
property is ignored in a stand-alone IntraWeb application.

Delphi Win32 Web Development 5. IntraWeb Application Mode

 Bob Swart Training & Consultancy - 25 - www.drbob42.com

InternalFilesURL
The InternalFilesURL property has only effect for ISAPI applications, and specifies the
URL where internal files like JavaScript source files are loaded from. This property is
ignored in a stand-alone IntraWeb application. The default value is / or the root of the
website.

JavascriptDebug
The JavascriptDebug property can be set to True (default is False). It contols the value
of the IWDEBUG global JavaScript variable that can be used to force JavaScript
messages when debugging:

</style><script type="text/javascript">
 var IWDEBUG = false;</script>
<script type="text/javascript" src="/$/js/IWPreScript.js_11.0.32"></script>

When JavascriptDebug is set to True, then the value of IWDEBUG will be set to true as
well.

Log
The Log property of the ServerController can be set to loNone (the default value) or
loFile. With a value of loFile, a log file will be generated on disk.

MasterTemplate
The MasterTemplate property of the ServerController can be used – in combination with
Layout Managers - to define a template that will be used for all forms in the IntraWeb
application.

PageTransitions
The PageTransitions property of the ServerController controls wether or not pages can
fade during the transitions. The default value is False.

Port
The Port property specifies the Port that the IntraWeb stand-alone application or
Windows Service will use (and will listen to). Note that your must ensure that your
firewall allows traffic through this specific port, or nobody will be able to reach your
IntraWeb server.

The value of this property has no effect for an ISAPI DLL, since IIS will control the port
(typically 80 for HTTP and 443 for HTTPS connections).
For IntraWeb standalone or service applications, you must ensure that the Port property
is a unique value, and not used by another application, otherwise you will get an error
message (only one server application can listen to a port at a single time).

If you do not know if your firewall is “open” to allow customers to connect to your
IntraWeb stand-alone application, I can recommend the ShieldsUP! service from Gibson
Research at http://www.grc.com which will test your firewall (for internet access).

RedirectMsgDelay
The RedirectMsgDelay property specifies the number seconds before the message with
an indication for a redirect to an previous correct state or an error page takes place (for
example if the user pressed the Back button).

Delphi Win32 Web Development 5. IntraWeb Application Mode

Bob Swart (Bob@eBob42.com) - 26 - February 2011

ServerResizeTimeout
When you resize a browser window that runs an IntraWeb application, the new size of
the browser window is sent to the server. Using the ServerResizeTimeout property you
can specify how many seconds the browser will wait before the new size of the browser
window will be sent to the server. The default is 0, which means an immediate submit
after the resizing stops, and after each small resize thereafter, which will not work good
for slow connections.

SessionTimeout
The SessionTimeout Integer property specifies the minutes of inactivity before a user's
session object is destroyed. This can happen if the user has closed the browser window,
for example, and can no longer communicate with the same session anymore. By
default, SessionTimeout is set to 10 minutes. For testing purposes it's sometime useful
to set SessionTimeout to 1 (note that 0 has the same effect as setting it to 1, and if
you're using cookies for session information, then a value of 0 means that a cookie is a
session cookie, and won't be stored on your clients' machines).

ShowLoadingAnimation
The ShowLoadingAnimation boolean property controls the small animation that is
displayed while your IntraWeb form is being loaded. By default, this property is set to
true, so the animation will be shown.

SSLOptions
The SSLOptions TIWSSLOptions property can be used to specify SSL Options, and
consist of a number of subproperties:
The SSLOptions.CertificatePassword String property specifies the password to use to
access the SSL certificates.
The SSLOptions.NonSSLRequest TIWNonSSLRequest property can be used to handle a
non-SSL request and can be set to nsAccept, nsBlock or nsRedirect.
The SSLPort property contains the SSL port to list on for HTTPS requests.
The SSLVersion property contains the SSL version, which can be sslv2, sslv23, or sslv3.

StyleSheet
The StyleSheet String property specifies the Filename or URL that contains the default
stylesheet for the IntraWeb application.

TemplateDir
The TemplateDir String property specifies the path where the HTML template files must
be placed in that are used by the TemplateProcessors. The property is related to the
MasterTemplate property of the ServerController and the

TimeoutResponse
The TimeoutResponse property replaces the old SessionTimeoutURL property of the
ServerController. We must now use a URL Responder to respond to a time out message
if we want to.
There are three built-in URL Handers in IntraWeb XI. The TIWURLResponserRedirect can
be used to redirect to another URL. Alternatives include TIWURLResponserEvent to use
an event handler to handle the request and produce a response for the timeout event,
and a TIWURLResponderDirListing to provide a directory listing.
For the old behaviour to work, we should place a TIWURLResponderRedirect on the
ServerModule, assign a value to the URL property, and assign the responder to the
TimeoutResponse property of the ServerController.

Delphi Win32 Web Development 5. IntraWeb Application Mode

 Bob Swart Training & Consultancy - 27 - www.drbob42.com

TIWServerController Events
The ServerController also has a number of useful events that can be used by the
IntraWeb application.

OnAfterDispatch
The OnAfterDispatch event handler is called right after the action is dispatched by the
server. This event handler can be used in combination with the OnBeforeDispatch.

procedure TIWServerController.IWServerControllerBaseAfterDispatch(
 Sender: TObject; Request: TWebRequest; Response: TWebResponse;
 var Handled: Boolean);
begin

end;

OnAfterRender
The OnAfterRender event handler is called after the rendering has been done.

procedure TIWServerController.IWServerControllerBaseAfterRender(
 ASession: TIWApplication; AForm: TIWBaseForm);
begin

end;

OnBackButton
The OnBackButton doesn't fire when the back button is pressed, but only after an
inconsistent state is detected (if you write any code for this event handler, then
HistoryEnabled should be set to True and ShowResyncWarning to False so you have to
handle the resync options yourself in the OnBackButton event handler):

Delphi Win32 Web Development 5. IntraWeb Application Mode

Bob Swart (Bob@eBob42.com) - 28 - February 2011

procedure TIWServerController.IWServerControllerBaseBackButton(
 ASubmittedSequence, ACurrentSequence: Integer; AFormName: String;
 var VHandled, VExecute: Boolean);
begin
 VHandled := True;
 VExecute := true;
 if WebApplication.FindComponent(AFormName) <> nil then
 WebApplication.SetActiveForm(WebApplication.FindComponent(AFormName));
 else
 if AFormName = 'IWFrmMain' then
 WebApplication.SetActiveForm(TIWFrmMain.Create(WebApplication));
end;

The code in the event handler above tries to find an existing instance of the form that
the browser was showing, and if so, reactivates that form (in the current - resync -
state). If not, then we can use the AFormName argument to find create a new instance
of the required form and show it instead.
I still think it's better not to use HistoryEnabled, ShowResyncWarning and
OnBackButton, and just convince the enduser that they are not supported in web
applications (also called weblications).

OnBeforeDispatch
The OnBeforeDispatch event handler can be used to examine the incoming request, and
potentially to write your own response and mark the request as handled.

procedure TIWServerController.IWServerControllerBaseBeforeDispatch(
 Sender: TObject; Request: TWebRequest; Response: TWebResponse;
 var Handled: Boolean);
begin

end;

OnBeforeRender
The OnBeforeRender event handler is called before rendering takes place – the
counterpart of the OnAfterRender event handler.

procedure TIWServerController.IWServerControllerBaseBeforeRender(
 ASession: TIWApplication; AForm: TIWBaseForm; var VNewForm: TIWBaseForm);
begin

end;

OnCloseSession
The OnCloseSession event handler is fired when a session is closed. The only argument
ASession is of type TIWApplication - the IntraWeb application variable.

procedure TIWServerController.IWServerControllerBaseCloseSession(
 ASession: TIWApplication);
begin
 ASession ...
end;

OnException
The OnException event handler is called when an exception is not handled by the
IntraWeb application. If we don't implement OnException, then the following default
code is executed:

Delphi Win32 Web Development 5. IntraWeb Application Mode

 Bob Swart Training & Consultancy - 29 - www.drbob42.com

procedure TIWServerController.IWServerControllerBaseException(
 AApplication: TIWApplication; AException: Exception);
begin
 AApplication.ShowMessage(AException.Message);
end;

Personally, I think it would make sense to do something special here, not just show the
exception, but also log the exception or do something useful with it (note: the
procedure Log doesn’t exist, but I’m just showing it here as an example – feel free to
use a tool like CodeSite or provide your own logging tool).

procedure TIWServerController.IWServerControllerBaseException(
 AApplication: TIWApplication; AException: Exception);
begin
 CodeSite.Send(AException.ClassName + ': ' + AException.Message);
 AApplication.ShowMessage(AException.ClassName + ': ' + AException.Message);
end;

Apart from logging the exception, it also helps to log the user and other information,
but the code above is just an example to show you where to place your own IntraWeb
exception and error handling code.
See the TIWApplication.ShowMessage section for all options that you can use when
showing messages (for example in a alert pop-up dialog, a new browser window, or the
current window).

OnGetSessionID
The OnGetSessionID event handler is used to return the session ID:

procedure TIWServerController.IWServerControllerBaseGetSessionID(
 ASession: TIWApplication; var VNewSessionID: string);
begin

end;

OnNewSession
The OnNewSession event handler is called when a new user session is created. The
default code creates the enduser session object as follows:

procedure TIWServerController.IWServerControllerBaseNewSession(
 ASession: TIWApplication; var VMainForm: TIWAppForm);
begin
 ASession.Data := TUserSession.Create(nil);
end;

Apart from the IntraWeb application variable, we also get the main form (the first one
that will be shown) as argument to this event handler.
If you create special things here, or perform some operations (like a unique logfile for
each specific session), then the OnCloseSession is the obvious place to undo these
special things again.

IntraWeb TIWApplication Properties
Before we move on to the second generated unit, with the IntraWeb Application Form of
type TIWAppForm, let's first examine in some detail the IntraWeb Application object
itself of type TIWApplication.
Each enduser (connected via browser or other device) will get its own session, which in
fact will be a unique, multi-threaded, instance of TIWApplication.

Delphi Win32 Web Development 5. IntraWeb Application Mode

Bob Swart (Bob@eBob42.com) - 30 - February 2011

ActiveForm
The TIWApplication.ActiveForm property of type TComponent (and not of the expected
TIWBaseForm type) points to the enduser's current active IntraWeb Application Form.

ActiveFormCount
The TIWApplication.ActiveFormCount Integer property contains the number of Active
Application Forms. I expect this to be either 0 (if no form is shown) or 1 (if one form is
shown).

AppID
The TIWApplication.AppID String property contains a unique string that identifies the
enduser's session. You can display this string for tracing/debugging purposes.

ApplicationURL
The ApplicationURL String property returns the URL for the application.

Browser
The TIWApplication.Browser TIWBrowser property contains the detected value of the
browser that the enduser is using. Possible values can be brUnknown, brIE,
brNetscape6, brOpera, brNetscape4, brOther and brHTML32Test (for internal testing
purposes).

Data
The TIWApplication.Data TObject property is used to maintain state and session
information. It is a pointer that is assigned to point to an object of type TUserSession
(in the OnNewSession event handler) which is derived from TComponent. The object
connected to the Data pointer is automatically destroyed when the session ends.

FormAction
The TIWApplication.FormAction String property specifies the value of the Action of the
current Active IntraWeb Application Form.

FormCount
The TIWApplication.FormCount Integer property contains the number of IntraWeb
Application Forms currently in memory.
Note that this number also includes the number of data modules.

Forms
The TIWApplication.Forms property contains a list (array) of all IntraWeb Application
Forms and data modules that have been created and are still available in memory (i.e.
have not been Released, yet).

IP
The TIWApplication.IP String property contains the IP address of the enduser that
started the request currently being handled. Can be useful for logging or security
purposes.

IsCallback
We can ask the IntraWeb application if the current request is part of a callback method.

LastAccess
The TIWApplication.LastAccess TDateTime property contains a timestamp of the last
access by the current user - the value of this timestamp in combination with the
TIWServerControllerBase.SessionTimeout property can determine when the session will
time out.

RedirectURL
The TIWApplication.RedirectURL String property contains the URL that will be used if the
enduser in the browser will be sent to after the TerminateAndRedirect method is called.

Delphi Win32 Web Development 5. IntraWeb Application Mode

 Bob Swart Training & Consultancy - 31 - www.drbob42.com

ReferringURL
The TIWApplication.ReferringURL String property contains the URL that referred to the
IntraWeb application. The value is retrieved from the HTTP Referrer header.

Request
The TIWApplication.Request TWebRequest property contains the incoming HTTP request
of type TWebRequest. This is the good-old Request that we've known since WebBroker,
and we can use Request.ContentFields (for form POSTs), Request.QueryFields (for form
GETs) as well as Request.CookieFields (for cookies) to get request input when required.

Response
The TIWApplication.Response TWebResponse property contains the outgoing HTTP
response of type TWebResponse. Although this is also the good-old Response that we've
known since WebBroker, it's probably not recommended to write output to this object.
I'll have to perform some more experiments to find out what the result can be...

RunParams
The TIWApplication.RunParams TStrings property contains a list of strings with the HTTP
variables that were passed as part of the application's URL.

SecureMode
The SecureMode property specifies whether or not a secure mode (like HTTPS) is used
for the application.

SessionTimeout
The SessionTimeout property contains the number of minutes before the session will be
timed out.

Terminated
The TIWApplication.Terminated Boolean property is True if the IntraWeb web application
is correctly terminated using the Terminate or TerminateAndRedirect function, which
are defined as follows:

procedure Terminate(const AMsg: String);

procedure TerminateAndRedirect(const AURL: String); overload;

procedure TerminateAndRedirect(const AURL: string; const AMsg: string); overload;

The AMsg in Terminate is a message that can be passed by the application and will be
shown to the enduser in the browser, for example:

 WebApplication.Terminate('Goodbye ' + WebApplication.AuthUser)

The AURL of TerminateAndRedirect is the URL to which the browser will be redirected.

TerminateMessage
The TIWApplication.TerminateMessage String property is a read-only property that
contains the message that will be displayed to the enduser if the application is
terminated, and something was passed in the AMsg argument to Terminate.
You can override this message by calling the Terminate method with the Msg argument.

TerminateURL
The TIWApplication.TerminateURL String property specifies the URL that the enduser
will be redirected to if the IntraWeb application was terminated correctly using the
TerminateAndRedirect method.

TrackID
The TIWApplication.TrackID Cardinal property is used as session tracking marker to
keep the user in sync if they browse their history or use the back button and try to post
old data.

Delphi Win32 Web Development 5. IntraWeb Application Mode

Bob Swart (Bob@eBob42.com) - 32 - February 2011

UserCacheDir
The TIWApplication.UserCacheDir specifies the user specific cache that holds files that
are created and kept for the life of the user session. Graphics and other resources that
are common among forms but are specific to a user are stored here.

TIWApplication Methods
The TIWApplication class has no events, but a number of methods that we can call from
the WebApplication object. Not all events are useful, or meant to be called directly, so
this list is limited to those methods that make sense to be called by IntraWeb
developers.

GoToURL
The TIWApplication.GoToURL method redirects the browser to the specified URL.

procedure GoToURL(const AURL: String);

MarkAccess
The TIWApplication.MarkAccess method updates the LastAccess field with the current
time. You can use this for testing/debugging purposes to prevent the session from
timing out, for example.

SendFile
The TIWApplication.SendFile method returns a file to the user (received by the
browser).

procedure SendFile(const APathname: String; AContentType: String = '';
 AFilename: String = '';
 const AAttachment: Boolean = False);

If AContentType is omitted or an empty string then the browser will retrieve the content
type from the operating system. If AFilename is omitted or an empty string then the
filename will only take APathname. If AAttachment is set to True, then the ContentType
will be ignored (AAttachment and AContentType are mutually exclusive).

SendStream
The TIWApplication.SendStream method returns a data stream to the user. The stream
is freed after it has been transmitted, so we should only create the stream but not free
it after calling SendStream.

procedure SendStream(AStream: TStream;
 const AContentType: String = '';
 const AFilename: String = '';
 const AAttachment: Boolean = False);

If AContentType is omitted or an empty string will retrieve the content type from
windows. If AAttachment is True, then the Content-Type will not be taken into
consideration, i.e. AAttachment and AContentType are mutually exclusive.

ShowMessage
The TIWApplication.ShowMessage method displays a message to the user and offers
them an "OK" button. After viewing the message and clicking the OK button they are
returned back to the previous form.

procedure ShowMessage(AMsg: String;
 const AType: TIWShowMessageType;
 ATemplate: String);

Delphi Win32 Web Development 5. IntraWeb Application Mode

 Bob Swart Training & Consultancy - 33 - www.drbob42.com

The AMsg String is the message to be displayed to the enduser in the browser.
The message can be displayed in different ways, however, which is controlled by the
AType argument of type TIWShowMessageType, which can be one of the following
values:
 smNewWindow displays the message in a new pop-up window.
 smSameWindow displays AMsg in the same window and replaces the current page

with AMsg. Clicking OK returns to the previous window with the previous page again.
 smSameWindowFrame works the same as smSameWindow, but in this case AMsg

is displayed in a scrollable frame on the page.
 smAlert displays a popup modal dialog to the user.

The ATemplate String allows us to specify a template to use as well. For the format of
the template see the IntraWeb Manual. If no template is specified, IntraWeb will
attempt to use the IWShowMessage.html template.
Templates are ignored when AType = smAlert or AType = smNewWindow.

Terminate
The TIWApplication.Terminate method terminates the application and shows a message.

procedure Terminate(const AMsg: String);

TerminateAndRedirect
The TIWApplication.TerminateAndRedirect overloaded method terminates the IntraWeb
application and redirects the enduser to another URL.

procedure TerminateAndRedirect(const AURL: string); overload;

procedure TerminateAndRedirect(const AURL: string;
 const AMsg: string); overload;

The last form of TerminateAndRedirect will first show the AMsg message, and then
redirects the user to the AURL. This is done with the following HTML body:

<HTML>
<META HTTP-EQUIV="Refresh" CONTENT="2;URL=http://www.ebob42.com">
<BODY>TerminateAndRedirect</BODY>
</HTML>

Where the AURL is placed in the URL part, and the AMsg is placed in the body tags. The
timeout is set to 2 seconds, and I haven't found a way to overrule that, yet.

TIWAppForm
Time to take a closer look at the IntraWeb Form in IWFormMain.pas. This form is
derived from TIWAppForm and produces HTML. We can use all component from the IW
Standard, IW Data, and IW Control categories, plus the IW URL Responders (with the
TIWURLResponderEvent, TIWURLResponderRedirect, and TIWURLResponderDirLister),
and for the IntraWeb XI Ultimate and evaluation editions the IW Authentication
category with the TIWAutherList, TIWAutherINI and TIWAutherEvent components.

IntraWeb TIWPageForm
Before we continue, let's examine in some more detail the properties and events of the
IntraWeb Page Form (in IWformMain.pas), derived from the TIWPageForm class. There
are a number of interesting properties that we should take a look at (note that not all
properties have meaning, such as Cursor):

Delphi Win32 Web Development 5. IntraWeb Application Mode

Bob Swart (Bob@eBob42.com) - 34 - February 2011

TIWPageForm is derived from TIWForm, which is derived from TIWBaseForm. Important
properties are now covered in some detail.

Delphi Win32 Web Development 5. IntraWeb Application Mode

 Bob Swart Training & Consultancy - 35 - www.drbob42.com

ActiveControl
The TIWForm.ActiveControl TIWControl property is used to specify the control that will
get the focus when the IntraWeb Page Form is first shown in the browser.

Background
The TIWForm.Background TIWBackground property specifies the background image for
the IntraWeb Page Form. We can specify a Filename or URL subproperty, and the Fixed
subproperty specifies whether the background image should scroll or not.

ExtraHeader
The TIWBaseForm.ExtraHeader TStrings property can be used to specify a number of
extra HTML strings that will be inserted in the <head>...</head> section of the
generated HTML document.

HandleTabs
The TIWForm.HandleTabs Boolean property generates special JavaScript code to
properly handle the tab key in Netscape 4 (in pages without using templates).

HiddenFields
The TIWBaseForm.HiddenFields TStrings property contains a list of hidden fields that
will appear in contents of the generated HTML document.

JavaScript
The TIWForm.JavaScript TStrings property can be used to enter some additional
JavaScript code that will be included in the generated HTML document.

LayoutMgr
The TIWBaseForm.LayoutMgr TIWLayoutMgrBase property specifies the specific layout
manager to use.

LinkColor
The TIWBaseForm.LinkColor TIWColor property defines the colour of the links on the
generated HTML document inside the browser. See also the VLinkColor property for the
colour of the visited links on the generated HTML document.

ShowHint
The TIWForm.ShowHint Boolean property specifies if the fly-over hints should be shown
for the IntraWeb controls - just as in "normal" Delphi applications.

StyleSheet
The TIWPageForm.StyleSheet TIWFileReference property specifies a stylesheet to use.
If the StyleSheet starts with http:// it will be treated as an URL, otherwise it is assumed
to be a filename (using a fully qualified path, or present in the files subdirectory).

SupportedBrowsers
The TIWBaseForm.SupportedBrowsers TIWBrowser property specifies the browsers that
will be supported by this IntraWeb application.

TextColor
The TIWBaseForm.TextColor TIWColor property specifies the colour of normal text on
the web page. Note that the IntraWeb controls can specify their own colour to override
this.

Title
The TIWBaseForm.Title String property specifies the title for the web page. Most
browsers display this in the browser window title bar. Note that you should not use the
Caption property for this (which is Windows GUI only), but the Title property instead.

VLinkColor
The TIWBaseForm.VLinkColor TIWColor property specifies the colour of visited links on
the IntraWeb Page Form. See also the LinkColor property.

Delphi Win32 Web Development 5. IntraWeb Application Mode

Bob Swart (Bob@eBob42.com) - 36 - February 2011

TIWPageForm Events
The TIWPageForm has a number of events that we can hook into and write code for.

OnAfterRender
The TIWPageForm.OnAfterRender event handler is called after a IntraWeb Page Form
has been rendered.

OnCreate
The TIWPageForm.OnCreate event handler is called when a new IntraWeb Page Form
has been created.

OnDefaultAction
The TIWPageForm.OnDefaultAction event handler is fired if the user causes a default
submit on the IntraWeb Page Form. This is usually caused by pressing the enter key in
an edit field.

OnDestroy
The TIWPageForm.OnDestroy event handler is called just before an IntraWeb Page Form
is destroyed (so we can clean-up what we have created in the OnCreate event handler).

OnRender
The TIWPageForm.OnRender event handler is called is called each time the IntraWeb
Page Form is generated for display in the browser. Note that sometimes this may be
called without the user actually clicking on buttons or links if they refresh the page
using the refresh function in their browser.

We can use the OnRender method to add content to the web page, for example by
adding items to the HiddenFields property (something which we'll do in a moment).

Delphi Win32 Web Development 5. IntraWeb Application Mode

 Bob Swart Training & Consultancy - 37 - www.drbob42.com

Designing IntraWeb Page Form
Let's start by placing a TIWLabel component from the IW Standard tab, set the Align
property to alTop and the text allignment to taCenter, and give the Caption property the
value "IntraWeb XI".

After you’ve saved your code, the source of the IWFormMain.pas unit should be as
follows:

unit IWFormMain;
interface
uses
 Classes, SysUtils, IWAppForm, IWApplication, IWColor, IWTypes;

type
 TIWForm1 = class(TIWAppForm)
 IWLabel1: TIWLabel;
 public
 end;
implementation

{$R *.dfm}

end.

Note the call to TIWForm1.SetAsMainForm in the initialization section that ensures that
this TIWForm1 (derived from TIWAppForm) will be used as main form is for HTML 4
browser clients.

IW Standard Controls
IntraWeb comes with a large number of controls that can be found in the Tool Palette
(but only when an IntraWeb Page is active in the designer, otherwise the controls are
hidden).
The IW Standard Controls can be used in regular IntraWeb Application or Page Forms,
and include 37 IntraWeb controls: TIWSilverlight, TIWSilverlightVideo, TIWApplet,
TIWButton, TIWCheckBox, TIWComboBox, TIWEdit, TIWFile, TIWFlash, TIWHRule,
TIWImage, TIWImageFile, TIWImageButton, TIWList, TIWLabel, TIWListBox, TIWLink,
TIWMemo, TIWMenu, TIWProgressBar, TIWRadioGroup, TIWRectangle, TIWRegion,
TIWText, TIWTimer, TIWGrid, TIWTreeView, TIWURL, TIWURLWindow, TIWActiveX,
TIWMPEG, TIWQuickTime, TIWCalendar, TIWOrderedListbox, TIWTabControl,
TIWTimeEdit, and TIWRadioButton.
I will cover their most important properties and events here, but won’t cover the Async
(AJAX) related properties here – these will be mentioned in the AJAX specific section.

TIWApplet
The TIWApplet component enables you to include Java applets with your IntraWeb
application, or at least to “integrate” a Java applet
The TIWApplet.AppletName String property specifies the name for the Java applet. This
may be useful for inter-applet communication.
The TIWApplet.AltText String property is the alternate text that should be used for
this applet. This text is used as a hint, while the applet is loading, or is displayed
instead of the applet when the applet cannot be loaded.

Delphi Win32 Web Development 5. IntraWeb Application Mode

Bob Swart (Bob@eBob42.com) - 38 - February 2011

The TIWApplet.Archive String property specifies the name of the archive from which
the applet is to be loaded.
The TIWApplet.ClassFile String property specifies the name of the file from which the
applet is to be loaded.
The TIWApplet.CodeBase String property specifies the code base for the applet. If
CodeBase is and empty string, the applet will be searched in the files directory.
The TIWApplet.HorizSpace Integer property specifies the size in pixels for the
horizontal gutter of the applet.
The TIWApplet.Params TStrings property contains a list of additional parameters that
are passed to the applet, in the format name=value.
The TIWApplet.VertSpace Integer property specifies the size in pixels for the vertical
gutter of the applet.

TIWButton
The TIWButton component shows a button that can display a text and that the enduser
can click on.

The TIWButton.ButtonType TIWButtonType property specifies the HTML type of the
button, which can be btSubmit, btReset or btButton (for a Normal button). Submit
buttons cause the action of the current form to be executed, reset buttons clear all the
editable fields of a HTML form while normal buttons don't have any default action.
Setting the ButtonType property changes the way the button interacts with the
containing form in the rendered HTML code.

The TIWButton.Caption TCaption String property is the text that will be displayed on
the button.
The TIWButton.Color TIWColor property specifies the background colour for the button.
The TIWButton.Confirmation String property can be used to display a confirmation
prompt to the user to confirm the action of the button when the user clicks on it.
For example, if the Confirmation property contains "Are you sure?" the user will be
asked this question when they click on the button with two options: confirm and cancel.
If the user clicks on confirm then the OnClick event of the button will fire. If the user
clicks on cancel the OnClick event will not fire.
To disable confirmation, set the Confirmation property to an empty string.
The TIWButton.DoSubmitValidation Boolean property specifies whether or not
validation is performed by other controls when the control is submitted. Validation is
done by properties such as Required, etc.
The TIWButton.Enabled Boolean property specifies whether the button should be
enabled for the user or not. A disabled button will not respond to mouse clicks and not
fire OnClick events (but it doesn't look disabled).
The TIWButton.HotKey String property specifies which shortcut key to use for pressing
that button. The value of the HotKey property must be a single character (so why not
make it of type Char instead of String?). The shortcut is formed as a combination of ALT
and the value of the HotKey property.
The TIWButton.ScriptEvents TIWScriptEvents property can be used to add Javascript
to control events to be processed on the client side. Scripts must be a Boolean
evaluation or a function that returns a Boolean. If it evaluates to true, IntraWeb will
continue processing the event itself if it uses the particular event. If it returns false,
IntraWeb will not process the event further.

Using the IntraWeb Event Scripts Editor you can write JavaScript for onAbort, onBlur,
onChange, onClick, onDblClick, onDragDrop, onError, onFocus, onKeyDown,
onKeyPress, onKeyUp, onLoad, onMouseDown, onMouseMove, onMouseOut, onMouseOver,
onMouseUp, onMove, onReset, onResize, onSubmit and onUnload events:

Delphi Win32 Web Development 5. IntraWeb Application Mode

 Bob Swart Training & Consultancy - 39 - www.drbob42.com

These ScriptEvents can be used with a lot of the IntraWeb component, but be aware
that not all of the available events are equally useful for all IntraWeb components.
Example scripting code (for the OnBlur event of a TIWEdit for example) is as follows:

if (this.value == '')
{
 alert('Warning: a value is required.')
}

The TIWButton also has an OnClick event handler that can be used to write server-side
code that executes when the user clicks on the button.

TIWCheckBox
The TIWCheckBox component displays a checkbox that can also display a text, and that
the user can check or uncheck.
The TIWCheckBox.Caption String property is the text that is displayed on the to the
right of the checkbox in the browser.
The TIWCheckBox.Checked Boolean property specifies whether or not the checkbox is
checked.
The TIWCheckBox.Confirmation String property can be used to display a prompt to the
user to confirm the OnClick action of the checkbox when the user clicks on it.
The TIWCheckBox.DoSubmitValidation Boolean property specifies whether or not
validation is performed by other controls when the control is submitted.
The TIWCheckBox.Editable property specifies whether the TIWCheckBox should respond
to user actions or not. A disabled checkbox (Editable is set to false - and not Enable as
the on-line help says) will not respond to mouse clicks, and the user won't be able to
interact with the checkbox.

Delphi Win32 Web Development 5. IntraWeb Application Mode

Bob Swart (Bob@eBob42.com) - 40 - February 2011

The TIWCheckBox.ScriptEvents TIWScriptEvents property can be used to add
Javascript to control events to be processed on the client side. Scripts must be a
Boolean evaluation or a function that returns a Boolean. If it evaluates to true,
IntraWeb will continue processing the event itself if it uses the particular event. If it
returns false, IntraWeb will not process the event further.
The TIWCheckBox.Style TIWCustomCheckBoxStyle property specifies how the checkbox
will appear in the browser. It can be set to stNormal or stCool (for a graphical checkbox
with colours).

The TIWCheckBox has an OnClick event handler that can be used to write server-side
code that executes when the user clicks on the checkbox. Warning: don't use this event
handler too often, since it means that for every OnClick event, a trip to the IntraWeb
application has to be made.
There is also an asynchronous way to send requests to the server, offered by the
OnAsyncClick, OnAsyncDoubleClick, OnAsyncEnter and OnAsyncExit events, but these
will be covered later in the AJAX section.

TIWComboBox
The TIWComboBox component displays a combobox, with string items that we can add to
the Items property.
The TIWComboBox.ItemIndex Integer property specifies the currently selected item. A
value of -1 specifies that no item is currently selected.
The TIWComboBox.Items TStrings property contains the string items in the
TIWComboBox.
The TIWComboBox.Sorted Boolean property specifies the sorting of items. Setting Sorted
to True causes the items to be sorted alphabetically. If the property is set to False, the
items are presented as they are provided in the Items property.
The TIWComboBox.DoSubmitValidation Boolean property specifies whether or not
validation is performed by other controls when the control is submitted.
The TIWComboBox.Editable property specifies whether the TIWComboBox should
respond to user actions or not.
The TIWComboBox.ItemsHaveValues Boolean property can be set to True if the items are
of the format: Name=Value. The Value will be written out as the Value portion of the
HTML OPTION tag and only the Name portion will be displayed. IntraWeb does not use
the Value tag and has no use in a normal IntraWeb application as this can be
accomplished easier using Delphi code in the IntraWeb application. This option is useful
if you are using ScriptEvents.
The TIWComboBox.NoSelectionText String property specifies the "no-selection" text of
HTML listboxes and comboboxes (that must have a selected item).
The TIWComboBox.RequireSelection Boolean property specifies if a -- No Selection --
will appear. HTML does not allow for the user to unselect a combo or listbox otherwise.
The TIWComboBox.ScriptEvents TIWScriptEvents property can be used to add
Javascript to control events to be processed on the client side. Scripts must be a
Boolean evaluation or a function that returns a Boolean. If it evaluates to true,
IntraWeb will continue processing the event itself if it uses the particular event. If it
returns false, IntraWeb will not process the event further.
The TIWComboBox.Text String property can be used to modify the text that the control
is displaying.
The TIWComboBox.UseSize Boolean property specifies whether to use the sizes defined
at design-time or use the size assigned on generation of the HTML.

The TIWComboBox has an OnChange event handler that will fire some server-side code
when the user changes the selection in the combobox. Warning: don't use this event
handler too often, or your performance will suffer (since each event will trigger a
response from the server), but use the OnAsync events instead (covered in the AJAX
section).

Delphi Win32 Web Development 5. IntraWeb Application Mode

 Bob Swart Training & Consultancy - 41 - www.drbob42.com

TIWEdit
The TIWEdit component displays an editbox that can be used for user input, using the
Text as main property.
The TIWEdit.PasswordPrompt Boolean property specifies whether or not this field will
be used for password masked entry. If the value is set to True, the field displays a *
(depending on the browser) instead of the actual text the user is typing.
The TIWEdit.Text String property contains the value of the TIWEdit box.
The TIWEdit.BGColor TIWColor property specifies the background colour for the
editbox.
The TIWEdit.DoSubmitValidation Boolean property specifies whether or not validation
is performed by other controls when the control is submitted.
The TIWEdit.Editable property specifies whether the TIWEdit should respond to user
actions or not. If set to True, the TIWEdit will render as an input box in HTML, but if set
to False, the TIWEdit will render as a text label.
The TIWEdit.FocusColor TIWColor property specifies the colour the TIWEdit gets when
it receives the focus.
The TIWEdit.FriendlyName String property is used when displaying messages to the
user about validation problems (for example with the Required property set to True).
The TIWEdit.MaxLength Integer property specifies the maximum length of text
specified as a character count that the user will be permitted to enter.
The TIWEdit.ReadOnly Boolean sets the TIWEdit control read-only in the browser. See
also the TIWEdit.Editable property.
The TIWEdit.Required Boolean property specifies whether or not user is required to
enter a value in this field before they can submit the form.
The TIWEdit.ScriptEvents TIWScriptEvents property can be used to add Javascript to
control events to be processed on the client side.

The TIWEdit has an OnSubmit event handler that is executed when a button is clicked
to submit the value of the edit control to the server. This can be used for validation, for
example.

TIWFile
The TIWFile component represents a file that can be uploaded from the client to the
IntraWeb application. Inside the browser, it will display an editbox as well as a browse
button next to it.

The TIWFile.ContentType String read-only property specifies the HTML content type of
the file to be transferred.
The TIWFile.Filename String property contains the name of the transferred file.

The TIWFile.SaveToFile(AFilename: string) method can be used to save the file to a
desired location on the web server machine where the Intraweb application is running.
The parameter AFilename should contain the name under which the file should be
saved. The file name must be specified with full path. If this parameter is omitted, the
file is saved under his default file name in the current directory.
The TIWFile.SaveToStream(AStream: TStream) method can be used to save the file on
the Intraweb server into a stream. The parameter AStream designates the stream on
which the file should be saved. The stream must be already created.

The TIWFile has two event handlers: OnReceivedFile (which has AFileName: String
as argument), and OnSubmit which is executed when a button is clicked to submit the
value of the file control to the server.

TIWFlash
The TIWFlash component enables you to include Flash Files with your IntraWeb
application. Like the TIWApplet component is this a nice way to integrate an external
source into your IntraWeb application.

Delphi Win32 Web Development 5. IntraWeb Application Mode

Bob Swart (Bob@eBob42.com) - 42 - February 2011

TIWHRule
The TIWHRule component displays a static horizontal rule, just like a <hr> in HTML. This
is probably the simplest of all IntraWeb components, and has no events to respond to.

TIWImage
The TIWImage component can be used to display an image in the browser. You can load
any image format (in the Picture property), and it will be converted to JPG when it's
rendered, using the JPegOptions subproperties.
The TIWImage.Picture property specifies the picture to display. This picture can be
dynamic and changed at run time.

The TIWImage has two events: an OnClick and an OnMouseDown event handler. Both
can be used to create "hot" images and image maps.

TIWImageFile
The TIWImageFile component can also be used to display an image, but this time you
don't load the image in the Picture property, but rather refer to the image with the
ImageFile property (which can point to a local Filename or a full URL). Since there is no
conversion involved, this is a more efficient way to use images in your IntraWeb
applications compared to using the TIWImage component.
The TIWImageFile.ImageFile TIWFileReference property specifies the file to display.
The Filename contains a path and filename to the image file.

Note: while the property editor allows you to select any file on the local computer, for
the image to display properly in the users browser at run time the file must reside in
the "Files" subdirectory of the application directory. If you do not have a "Files" sub
directory, you must create one in your application directory.
Intraweb contains support for JPG files. To support GIF files, GIF support such as
GIFImage must be installed into Delphi. The GIF support does not need to be compiled
into the program at runtime, but must be loaded into Delphi so that TImageFile can
properly display the GIF at design time.

The TIWImage has two events: an OnClick and an OnMouseDown event handler. Both can
be used to create "hot" images and image maps (just like the TIWImage component).

TIWImageButton
The TIWImageButton is a TIWImage component that not only response to a Click, but
also has both an ImageFile and a HotImageFile property, both with the usual Filename
and URL property. The HotImageFile is shown when the mouse moves over the button.

The TIWImageButton has two events: an OnClick and an OnMouseDown event handler.

TIWList
The TIWList component can be used to produce a static list of items, just like the
and HTML tags with for individual list items.
The TIWList.Items TStrings property holds the list of items to be displayed in the list.
The TIWList.Numbered Boolean property specifies whether the list will be rendered as a
numbered list (equivalent to the tag) or as an unnumbered list (equivalent to the
 tag).

TIWLabel
The TIWLabel component can be used to display a label of text. Useful in combination
with a TIWEdit or TIWDBEdit component for example.
The TIWLabel.AutoSize Boolean property can be set to True to enforce the label to
dynamically resize itself in order to fit the text in the Caption property.
The TIWLabel.Caption TCaption String property is the text which is displayed to the
user. You can use the font to change how the text is displayed to the user.

Delphi Win32 Web Development 5. IntraWeb Application Mode

 Bob Swart Training & Consultancy - 43 - www.drbob42.com

The TIWLabel.RawText Boolean property can be set to True to make sure special
characters will not be translated into HTML escape characters but emitted in raw
unchanged format.
We'll examine the implementation of the TIWLabel component - as well as derived
components - in the section on IntraWeb custom components, later in this courseware
manual

TIWListbox
The TIWListbox component displays a listbox, with string items that we can add to the
Items property.
The TIWListbox.ItemIndex Integer property specifies the currently selected item. A
value of -1 specifies that no item is currently selected.
The TIWListbox.Items TStrings property contains the string items in the TIWListbox,
which can be sorted or unsorted.
The TIWListbox.MultiSelect Boolean property specifies whether or not a multiple
selection of items can be made. MultiSelect and RequireSelection are mutually
exclusive.
The TIWListbox.Sorted Boolean property specifies the sorting of items. Setting Sorted
to True causes the items to be sorted alphabetically. If the property is set to False, the
items are presented as they are provided in the Items property.
The TIWListbox.DoSubmitValidation Boolean property specifies whether or not
validation is performed by other controls when the control is submitted.
The TIWListbox.Editable property specifies whether the TIWComboBox should respond
to user actions or not.
The TIWListbox.ItemsHaveValues Boolean property can be set to True if the items are
of the format: Name=Value. The Value will be written out as the Value portion of the
HTML OPTION tag and only the Name portion will be displayed. IntraWeb does not use the
Value tag and has no use in a normal IntraWeb application as this can be accomplished
easier using Delphi code in the IntraWeb application. This option is useful if you are
using ScriptEvents.
The TIWListbox.NoSelectionText String property specifies the "no-selection" text of
HTML listboxes and comboboxes (that must have a selected item).
The TIWListbox.RequireSelection Boolean property specifies if a -- No Selection --
will appear. HTML does not allow for the user to unselect a combo or listbox otherwise.
The TIWListbox.ScriptEvents TIWScriptEvents property can be used to add
Javascript to control events to be processed on the client side. Scripts must be a
Boolean evaluation or a function that returns a Boolean. If it evaluates to true,
IntraWeb will continue processing the event itself if it uses the particular event. If it
returns false, IntraWeb will not process the event further.
The TIWListbox.Text String property can be used to modify the text that the control is
displaying.
The TIWListbox.UseSize Boolean property specifies whether to use the sizes defined at
design-time or use the size assigned on generation of the HTML.

The TIWListBox has an OnChange event handler that will fire some server-side code
when the user changes the selection in the listbox. Warning: don't use this event
handler too often (but use async events, which will be covered in the AJAX section).

TIWLink
The TIWLink component can be used to display a hyperlink in the browser that the user
can click on.
The TIWLink.Caption TCaption String property specifies the text that is displayed in
the link.
The TIWLink.Color TIWColor property specifies the background colour for the link.

Delphi Win32 Web Development 5. IntraWeb Application Mode

Bob Swart (Bob@eBob42.com) - 44 - February 2011

The TIWLink.Confirmation String property can be used to display a prompt to the user
to confirm the OnClick action of the link when the user clicks on it.
The TIWLink.DoSubmitValidation Boolean property specifies whether or not validation
is performed by other controls when the control is submitted.
The TIWLink.ScriptEvents TIWScriptEvents property can be used to add Javascript to
control events to be processed on the client side. Scripts must be a Boolean evaluation
or a function that returns a Boolean. If it evaluates to true, IntraWeb will continue
processing the event itself if it uses the particular event. If it returns false, IntraWeb
will not process the event further.
The TIWLink.RawText boolean property, by default set to false, can be used to control
how the Caption of the TIWLink component has to be rendered as HTML. If you want to
include your own HTML tags, then set the RawText property to true.

The TIWLink has an OnClick event handler that will execute some server-side code
when the user indeed clicks on it.

TIWMemo
The TIWMemo component can be used to show a multi-line edit control, where the user
can enter more than one line of text.
The TIWMemo.Lines TStrings property holds the contents of the multi-line edit control.
Unlike the TIWEdit, however, the TIWMemo has no special event handlers.

TIWMenu
The TIWMenu component can be used to add a menu to your IntraWeb Page Form. Note
that for the actual menu, it needs a TMainMenu component, which then needs to be
assigned to the AttachedMenu property. Note that you still need to place the TIWMenu on
the top of your IntraWeb Page Form (by default, it will be displayed where you placed
the component, and not in the upper-left corner).
As a consequence of using a TMainMenu to delegate the menu itself, the TMainMenu
menu items (events) are actually the ones that are executed, and the TIWMenu is only
responsible for rendering and displaying the menu in a browser.
The TIWMenu.AttachedMenu TMainMenu property can be used to copy the items from a
standard TMenu control (like TMainMenu) to the TIWMenu.
The TIWMenu.AutoSize TIWMenuAutoSize property specifies whether the control should
be automatically sized to the browser's window or frame dimensions or not. Possible
values are: mnaNone (menu is drawn according to Width and Height values),
mnaFullWidth (menu is expanded to the full width of the window), or mnaFullHeight
(menu is expanded to the full height of the window).
The TIWMenu.ItemSpacing TIWSpaceItems property specifies the spacing of the menu
items. Possible values are: itsNone (items are not spaced at all) or itsEvenlySpaced
(items are evenly spaced).
The TIWMenu.MainMenuStyle TIWMenuStyle property specifies various attributes, like
font and colour, for the menu control. control.
The TIWMenu.TextOffset Integer property specifies the offset in pixels from the border
of the menu control where the text will be drawn.
The TIWMenu.TimeOut Integer property specifies the interval of time after which the
dropped down section of a menu closes automatically.

TIWProgressBar
The TIWProgressBar component can be used to display a progressbar. The progressbar
is always shown horizontal only, and filled from left to right, it can display the progress
value itself as well and use a colour.
The TIWProgressBar.BGColor TIWColor property specifies the background colour of the
progressbar.

Delphi Win32 Web Development 5. IntraWeb Application Mode

 Bob Swart Training & Consultancy - 45 - www.drbob42.com

The TIWProgressBar.Color TIWColor property specifies the colour that is used for the
progress portion of the bar (from left to right).
The TIWProgressBar.Percent Integer property specifies the progress value in percent
from 0 to 100.
The TIWProgressBar.ShowText Boolean property specifies whether or not a text
representation of the percentage will be displayed inside the progressbar.

TIWRadioGroup
The TIWRadioGroup component displays a group of radio button component, which can
be filled by using the Items property.
The TIWRadioGroup.ItemIndex Integer property specifies the currently selected item. A
value of -1 specifies that no item is currently selected.
The TIWRadioGroup.Items TStrings property contains the items in the
TIWRadioGroup.
The TIWRadioGroup.Layout TIWRadioGroupLayout property specifies if radio buttons
will be arranged vertically in a column or horizontally in a row.
The TIWRadioGroup.Confirmation String property can be used to display a prompt to
the user to confirm the OnClick action of the link when the user clicks on it.

The TIWRadioGroup has no special event handlers when a radio button is clicked, but it
does support the OnClick event handler.

TIWRectangle
The TIWRectangle component is like a big static panel (with its own colour) on which
we can put other controls.
You can add text to the rectangle using the Text property. You can change the
alignment of the rectangle by setting the Alignment and VAlign properties. You can
change the appearance of the rectangle's border by modifying the BorderOptions
property.

TIWRegion
The TIWRegion component can be used as a container for other IntraWeb controls, like
the regular TPanel component of Delphi. All controls on a TIWRegion have the same
parent, and the same relative position, so you can easily work with and position regions.

TIWText
The TIWText component can be used to display multiple lines of text (in the Lines
property) without the ability to have any user input. This is an ideal way to include
some "raw" HTML.
Note that four other TIWxxx components also support a RawText property to render
them as raw HTML (the TIWLabel, TIWLink, TIWURL,)

TIWTimer
The TIWTimer component is a handy component: it fires the OnTimer event handler
after every specified Interval. The event is fired at the client side in the browser (using
JavaScript), but you must take care not to invoke OnTimer events while a previous one
is still executing, because each OnTimer event will trigger a request to the web server
application!
The TIWTimer.Enabled Boolean property specifies whether the timer is active or not. A
disabled timer (Enabled = false) will not trigger any OnTimer event.
The TIWTimer.Interval Integer property specifies the interval of time in milliseconds
after which the timer will call the action defined in the OnTimer event.

The TIWTimer has one obvious event handler: OnTimer, which is executed when the
specified Interval is over (Interval is in milliseconds, so a value of 1000 is one second).

Delphi Win32 Web Development 5. IntraWeb Application Mode

Bob Swart (Bob@eBob42.com) - 46 - February 2011

TIWGrid
The TIWGrid component displays a grid that we can fill with different information in
each cell. In order to work with the TIWGrid, we have to set the ColumnCount and
RowCount properties, as well as the Cell property (of type Array of Array of String,
starting the index with row and them column).
The TIWGrid has two special event handlers: OnRenderCell (which is part of the
TIWCustomGrid in case you want to create your own custom TIWGrid component) and
OnCellClick which is fired when the user clicks inside a Grid Cell with the Clickable
property set to True.
Warning: you don't want to call these events too often (for large Grids, this means that
for every cell render or after each cell click, a server side event handler is fired).

As an example, set ColumnCount to 7 and RowCount to 6 and write the following code for
the FormCreate and IWGrid's OnCellClick event handler:

procedure TIWForm1.IWAppFormCreate(Sender: TObject);
var
 i,j: Integer;
begin
 for i:=0 to Pred(IWGrid1.RowCount) do
 begin
 for j:=0 to Pred(IWGrid1.ColumnCount) do
 begin
 IWGrid1.Cell[i,j].Text := Format('R%d/C%d',[i,j]);
 IWGrid1.Cell[i,j].Alignment := taCenter;
 IWGrid1.Cell[i,j].Clickable := True
 end
 end
end;

procedure TIWForm1.IWGrid1CellClick(const ARow, AColumn: Integer);
begin
 IWGrid1.Caption := Format('You hit (R%d/C%d)', [ARow, AColumn])
end;

Delphi Win32 Web Development 5. IntraWeb Application Mode

 Bob Swart Training & Consultancy - 47 - www.drbob42.com

TIWTreeview
The TIWTreeview component can be used to produce a static treeview or outline in the
IntraWeb application. Note that there are no special events associated (when clicking on
a node or opening/closing nodes).
Individual TIWTreeview nodes, however, can be assigned OnClick event handlers using
the special TIWTreeview node editor.

TIWTreeViewItem
Drop a TIWTreeView component on an IntraWeb form, and click on the ellipsis for the
TreeNodex property to start the IWTreeView items editor. If you right-click here, you'll
find four possible actions: New Root Item, New Item, Delete Item and Edit Caption
(although you can also edit the Caption using the Object Inspector). We have to start
with a New Root Item (the treeview can contain more than one root), and then the
subitems.
Each item can get five item images (for closed folder, document, minus, open folder,
and plus), can be Expanded to show subnodes, and can respond to the OnClick event
handler, which sends the itemnode itself as sender.

TIWURL
The TIWURL component can be used to show hyperlinks to external pages. A bit similar
to the TIWLink component, with the difference that no OnClick event handler is
present, and the URL property actually defines where you are going to after clicking on
the component.
The RawText boolean property, by default set to false, can be used to control how the
Caption of the TIWURL component has to be rendered as HTML. If you want to include
your own HTML tags, then set the RawText property to true.

TIWURLWindow
The TIWURLWindow component is the equivalent of a DHTML <IFRAME..>. Use
TIWURLWindow to create windows within the main window, but be aware that not all
browsers support this.
The URI property can be given a value like http://www.eBob42.com/courseware or a
reference to a local file.

TIWMPeg
The TIWMPeg component enables you to include MPeg movies with your IntraWeb
application. I have no experience with this, yet.

TIWQuickTime
The TIWQuickTime component enables you to include QuickTime movies with your
IntraWeb application. I have no experience with this, yet.

TIWCalendar
TIWCalendar is an Intraweb class designed to render a calendar. The calendar can be
customised, and each individual cell in the calendar can display user defined text.
TIWCalendar works with localised strings. The day names and the display of the current
date are made with values taken from the operating system.

Delphi Win32 Web Development 5. IntraWeb Application Mode

Bob Swart (Bob@eBob42.com) - 48 - February 2011

Multiple IntraWeb Application Forms
Let’s now examine how multiple IntraWeb forms can work together. Do File | New -
Other, go to the VCL for the Web category in the Object Repository and double-click on
the New Form to use the New Form Wizard to create a second IntraWeb Application
Form. Where the first IntraWeb Application Form was named "IWForm1", the second
one will be called "IWForm2" and saved in IWSecondForm.pas. In order to navigate
from the first form (the main form) to the second one, we first need to add the second
unit to the uses clause of the interface section of the first unit, and then need to drop a
TIWButton component on each of the two IntraWeb Application Forms.
So, place a TIWButton component on the first IntraWeb Application Form, and set the
Caption property to "Next Form".
In the OnClick event handler, write the following code:

procedure TIWForm1.IWButton1Click(Sender: TObject);
begin
 TIWForm2.Create(WebApplication).Show
end;

In this single line of code, we create the second IntraWeb Application Form, passing the
WebApplication as owner (remember that WebApplication is a member field of all
IntraWeb Forms), and directly calling the Show method to display the new form.
There are at least two things here that require special attention: why use Show instead
of ShowModal, and why not destroy the IntraWeb Application Form afterwards? To
answer the first question: there are no pop-up forms in web application, and hence a
ShowModal is not needed. When a new IntraWeb Application Form is shown, it simply
replaces the previous one. Or, more correctly, it is simply placed on top of the previous
one, as if we were dealing with a huge stack of IntraWeb Application Form. And that's in
fact exactly what's happening. And since we have a stack, there's no way the previous
IntraWeb Application Form can wait and see what happens until the next form is
destroyed. In fact, the call to Show is non-blocking (as we all know), so the previous
IntraWeb Application Form is just waiting until it is activated again. And when an
IntraWeb Application Form is no longer required, and should in fact be closed (in order
to return to the previous Application Form), the programmer must call Release (and not
Close or Free) to release the current IntraWeb Application Form and return to the
previous one.
In order to implement this, drop a TIWButton component on the second form, put
"Close" (or "Return") in its Caption property, and write the following single line of code
in its OnClick event handler:

procedure TIWForm2.IWButton1Click(Sender: TObject);
begin
 Release
end;

That's it! Once we click on the first button, a new IntraWeb Application Form is created
and shown, and if we click on the second button (or rather a button on the second
IntraWeb Application Form), the IntraWeb Application Form is released again, and we
return to the first IntraWeb Application Form.

Beware: this is one of those rare cases where you create something
in one place, and release it somewhere else.

Final Release
Note that if you close your final form, then the application is terminated, and all you will
see is a "200 OK" message in an otherwise empty browser window.

Delphi Win32 Web Development 5. IntraWeb Application Mode

 Bob Swart Training & Consultancy - 49 - www.drbob42.com

If you don't want that to happen, then you must make sure that the call to Release in
the "main" IntraWeb Application Form is replaced by a call to WebApplication.Terminate
with a goodbye message, as follows:

procedure TIWForm2.IWButton1Click(Sender: TObject);
begin
 Terminate('Thank you for using this IntraWeb application');
end;

or a call to WebApplication.TerminateAndRedirect, sending the user to another URL with
some more helpful information, as follows:

procedure TIWForm2.IWButton1Click(Sender: TObject);
begin
 TerminateAndRedirect('http://www.eBob42.com');
end;

If you also pass a second string to TerminateAndRedirect (the message), then this
message will be shown in the browser window for two seconds, before you will be
redirected to the first string (the URL).
In all cases of using Terminate (or TerminateAndRedirect), the session will be
destroyed.

Passing Information Around
The next chapter will cover IntraWeb State Management, but right now I want to show
you that even without state management you can simply pass data from one IntraWeb
form to another. Let's build a little Ping-Pong application, where we'll pass information
from one form to another, using the current IntraWeb standalone application with two
IntraWeb forms: TIWForm1 and TIWForm2.
To implement this, place a TIWEdit on both TIWForms, and modify the OnClick event
handler for the TIWButton on the TIWForm1 as follows:

procedure TIWForm1.IWButton1Click(Sender: TObject);
var
 IWForm2: TIWForm2;
begin
 IWForm2 := TIWForm2.Create(WebApplication);
 IWForm2.IWEdit1.Text := IWEdit1.Text; // copy data
 IWForm2.Show
end;

This will make sure that the contents of the TIWEdit from the TIWForm1 is copied to the
TIWEdit from the TIWForm2, thereby taking data with you from one place to another.
And apart from IntraWeb controls, you can of course initialise any control or field from
the TIWForm2 from the TIWForm1 event handler.

Getting Back
On TIWForm2, you can drop a TIWButton to release the second form again, which will
remove the second form from the stack of forms, resulting in the first form being
displayed again.

If you want to pass information back from TIWForm2 to TIWForm1, then you must first
store a reference to the first form (TIWForm1) in the second form, and initialise that
field in the IWForm1.IWButton1Click.

This means that TIWForm2 gets extended with a reference to IWForm1 as follows (see
next page):

Delphi Win32 Web Development 5. IntraWeb Application Mode

Bob Swart (Bob@eBob42.com) - 50 - February 2011

type
 TIWForm2 = class(TIWAppForm)
 IWEdit1: TIWEdit;
 IWButton1: TIWButton;
 procedure IWButton1Click(Sender: TObject);
 public
 IWForm1: TIWForm1; // in Unit1.pas
 end;

With the following implementation of TIWForm2.IWButton1Click:

procedure TIWForm2.IWButton1Click(Sender: TObject);
begin
 if Assigned(IWForm1) and not IWForm1.Released then
 begin
 IWForm1.IWEdit1.Text := IWEdit1.Text;
 Release
 end
 else
 WebApplication.ShowMessage('Error: IWForm1 doesn''t exist!', smAlert)
end;

Which also requires the following change to the TIWForm1.IWButton1Click:

procedure TIWForm1.IWButton1Click(Sender: TObject);
var
 IWForm2: TIWForm2;
begin
 IWForm2 := TIWForm2.Create(WebApplication);
 IWForm2.IWEdit1.Text := IWEdit1.Text; // copy data
 IWForm2.IWForm1 := Self; // copy self
 IWForm2.Show;
//Release // try this to experience the error message of TIWForm2
end;

State Management
IntraWeb State Management is supported by the UserSession, where we can add any
fields we want. Apart from using the IntraWeb Application Forms to pass information
around, we can also use the UserSession to store information that belongs to our
session (and never, ever use global variables because these are neither threat-safe nor
unique for our specific request).

UserSession
So, let’s now check out the UserSession unit that belongs to the IntraWeb application (if
you checked the Create User Session option in the New IntraWeb Application wizard).
By default, the UserSessionUnit contains the following source code (note that I fixed the
comment, as it doesn’t make much sense otherwise):

unit UserSessionUnit;
{
 This is a DataModule where you can add components or declare fields
 that are specific to ONE user. Instead of creating global variables,
 it is better to use this datamodule. You can then access it using the
 global UserSession variable.
}
interface
uses
 IWUserSessionBase, SysUtils, Classes;

Delphi Win32 Web Development 5. IntraWeb Application Mode

 Bob Swart Training & Consultancy - 51 - www.drbob42.com

type
 TIWUserSession = class(TIWUserSessionBase)
 private
 { Private declarations }
 public
 { Public declarations }
 end;

implementation

{$R *.dfm}

end.

The UserSessionUnit contains a helpful comment that should tell developers not to use
global variables, but to store these as fields in the TIWUserSession class.

Extending User Session
As an example, let’s add a shopping cart to this TIWUserSession, in the form of a
TStringList. During the execution of the IntraWeb application, anything can be placed on
the shopping cart stringlist.

type
 TIWUserSession = class(TIWUserSessionBase)
 private
 { Private declarations }
 public
 { Public declarations }
 ShoppingCart: TStringList;
 end;

Note that we’re already missing something important: creating the ShoppingCart. Right
now, if we start using it, it will still be a nil pointer!
In order to create an instance of the TStringList when the User Session is created, we
simply have to write some code in the OnCreate event handler of the TIWUserSession,
as follows:

procedure TIWUserSession.IWUserSessionBaseCreate(Sender: TObject);
begin
 ShoppingCart := TStringList.Create
end;

And if we ever need to clean up something from our session, we can do it in the
OnDestroy event handler (which will be called when the session times out, or when the
session is explicitly destroyed).

Using User Session
The next question is: how do we use the ShoppingCart from the UserSession? For this,
we need to look back at the ServerController unit, which defines a global function
UserSession that returns a TIWUserSession.
The implementation of this function is as follows:

function UserSession: TIWUserSession;
begin
 Result := TIWUserSession(WebApplication.Data);
end;

Where WebApplication is the instance of the IntraWeb application that belongs to our
thread.

Delphi Win32 Web Development 5. IntraWeb Application Mode

Bob Swart (Bob@eBob42.com) - 52 - February 2011

So inside our IntraWeb Application Forms, we can simply add the ServerController unit
to our uses clause, and call the UserSession to return our specific TIWUserSession
instance. And since we’ve added the ShoppingCart (or any of our custom user session
fields) to the actual TIWUserSession class, they will also show up using Code Insight. No
further casting needed.
So, inside any event of the IntraWeb Application Form, we can write code like the
following:

procedure TIWForm1.IWAppFormCreate(Sender: TObject);
begin
 UserSession.ShoppingCart.Add('Delphi VCL Database Development')
end;

To add the book Delphi VCL Database Development to our shopping cart. And this
shopping cart in the User Session can be used at any time and any place in our
IntraWeb application, as long as the session remains active.

Summary
In this section, we have examined the IntraWeb Application, Server Controller, User
Session and Form properties, events and methods, including how to pass information
from one form to another, and using the User Session.
The next section will cover IntraWeb in combination with databases.

Delphi Win32 Web Development 8. IntraWeb and AJAX

 Bob Swart Training & Consultancy - 53 - www.drbob42.com

3. IntraWeb and Databases
IntraWeb supports databases and data access, and even allows us to share data
modules and pool data modules (with with a little manual work, pool shared data
modules).
In this section, we’ll examine the data access part of IntraWeb. As example, we should
create a new IntraWeb XI project, with the Pool Data Connections option checked
(which we’ll cover in detail in this section).

The resulting application IWDBDemo contains a DatamoduleUnit, a ServerController, a
Unit1.pas (with the main form, so save that for example in IWMainForm.pas) and a
UserSessionUnit.pas

Data Module
Let's turn our attention to the unit UserSessionUnit.pas, which contains the
IWUserSession of type TIWUserSession, derived from TIWUserSessionBase which in
turn is derived from TIWDataModule (which is an alias for TDataModule). As you can
see, the TISUserSession is almost a regular data module (where the instance is only
available for our session). As a consequence, we can place any data access, dataset and
related components here. Since the Borland Database Engine (BDE) is "frozen" (and not
recommended to use in web server applications anyway), and SQL Links even
deprecated, this leaves dbGo for ADO, InterBase Express (IBX) and dbExpress (DBX4).
Third party alternatives include Advantage Database Server (ADS) with its own
TDataSet descendant component, which can also be used in combination with IntraWeb.
In this case, I want to use dbExpress as database connectivity layer in web server
applications. Using dbExpress, we can connect to InterBase, Oracle, DB2, Informix,
MySQL, MS SQL Server and more using third-party drivers. If you know on beforehand
that the database is limited to SQL Server or Access, you can use dbGo for ADO as well.
Or you can use Advantage if that’s the database of your choice, of course.

Delphi Win32 Web Development 8. IntraWeb and AJAX

Bob Swart (Bob@eBob42.com) - 54 - February 2011

TSQLConnection
Using dbExpress, we need to start by placing a TSQLConnection component on the data
module in the UserSessionUnit.

Using the Object Inspector, we can either assign a value to a predefined connection
using the ConnectionName property, or configure the TSQLConnection component
without depending on the connections definitions, by using the Driver property. Since
this is easier when deploying the application (no need to deploy dbxConnections.ini),
this example will only use the Driver property, and not the ConnectionName.
Open up the Driver property and select the database you want to use. The available
database drivers depend on the edition of Delphi XE that you are using. Professional will
show less drivers than Enterprise.

For the example in this section, select the MSSQL driver (or play along with a database
connection of your own). Once MSSQL is selected, the Driver property gets a “+” prefix
and can be opened to show the MSSQL specific subproperties. We need to specify the
Database, HostName, UserName and Password subproperties. And also set the
LoginPrompt to False, by the way.

Delphi Win32 Web Development 8. IntraWeb and AJAX

 Bob Swart Training & Consultancy - 55 - www.drbob42.com

Note that OS Authentication has to be set to False for SQL Server when deploying on a
Windows server more recent than Windows 2000 (and an Internet Information Server
version higher than 5).
For SQL Server we can use the example Northwind database for example, just like
InterBase includes the EMPLOYEE.GDB database which can also be used of course.

TSQLDataSet
For the examples in this section, I will use the Employees table from either of the SQL
Server or InterBase databases.
To continue with the data module, place a first TSQLDataSet component (a hybrid
component with almost TSQLTable, TSQLQuery and TSQLStoredProc functionality), and
call it sqlEmployees. Point the SQLConnection property of the TSQLDataSet component
to the TSQLConnection component.

Double-click on the CommandText property of the TSQLDataSet component to start the
dbExpress Query CommandText Editor. Select “dbo” as Schema name (click on Get
Database Objects to see the list of tables), and then use this dialog to build a simple
SQL query, like

SELECT * FROM Employees

In order to be able to really use the data from the TSQLDataSet component, we need to
place three additional components (from the Data Access category of the Delphi Tool
Palette), namely a TDataSetProvider, a TClientDataSet and a TDataSource component.
Place all three components on the data module.

Delphi Win32 Web Development 8. IntraWeb and AJAX

Bob Swart (Bob@eBob42.com) - 56 - February 2011

Give the name property of the TDataSetProvider component the value dspEmployees,
set the name property of the TClientDataSet component to cdsEmployees, and finally
set the name of the TDataSource to dsEmployees. Point the DataSet property of the
dspEmployees TDataSetProvider to the sqlEmployees TSQLDataSet component, point
the ProviderName property of the cdsEmployees TClientDataSet component to the
dspEmployees TDataSetProvider component, and finally point the DataSet property of
the dsEmployees TDataSource component to the cdsEmployees TClientDataSet
component. Set the dspEmployees’s UpdateMode to upWhereChanged.

The data module in the UserSessionUnit should now roughly look as follows:

IW Data Controls
Now that we have the data module, it's time to move back to the IntraWeb forms.
Starting with the "regular" TIWAppForm, we should look at the components of the IW
Data category from the Delphi Tool Palette.

There are 14 data-aware controls in the IW Data category, namely: TIWDBCheckBox,
TIWDBComboBox, TIWDBEdit, TIWDBGrid, TIWDBImage, TIWDBLabel, TIWDBListbox,
TIWDBLookupListbox, TIWDBLookupCombobox, TIWDBFile, TIWDBMemo, TIWDBNavigator,
TIWDBText, and TIWDBRadioGroup.

TIWDBCheckBox
The TIWDBCheckBox component is a data-aware TIWCheckBox component.

TIWDBComboBox
The TIWDBComboBox component is a data-aware TIWComboBox component.

TIWDBEdit
The TIWDBEdit component is a data-aware TIWEdit component.

TIWDBGrid
The TIWDBGrid component is a data-aware TIWCustomGrid component, which means it
does not expose the OnCellClick event handler.
For a detailed overview of the capabilities of the TIWDBGrid component, see the
continued demo section a few pages from now.

TIWDBImage
The TIWDBImage component is a data-aware TIWImage component.

TIWDBLabel
The TIWDBLabel component is a data-aware TIWLabel component.

Delphi Win32 Web Development 8. IntraWeb and AJAX

 Bob Swart Training & Consultancy - 57 - www.drbob42.com

TIWDBListbox
The TIWDBListbox component is a data-aware TIWListbox component.

TIWDBLookupListbox
The TIWDBLookupListbox component is a component that will display a listbox filled
with lookup items that can be used to fill a field (when the lookup itself is coming from
another dataset). Just like the regular Delphi TLookupListbox, using a DataSource and
DataField, as well as ListSource and ListField (as well as KeyField).
The TIWDBLookupListbox has a special OnChange event handler.

TIWDBLookupCombobox
The TIWDBLookupCombobox component is a component that will display a combobox
filled with lookup items that can be used to fill a field (when the lookup itself is coming
from another dataset). Just like the regular Delphi TLookupCombobox, using a
DataSource and DataField, as well as ListSource and ListField (as well as KeyField).
The TIWDBLookupCombobox has a special OnChange event handler.

TIWDBFile
The TIWDBFile component is a data-aware version of the TIWFile component, where a
database stream field can be used to place the uploaded file.

TIWDBMemo
The TIWDBMemo component is a data-aware version of the TIWMemo component.

TIWDBNavigator
The TIWDBNavigator component is a database navigator in the IntraWeb Page Form.
The TIWDBNavigator.VisualButtons property specifies how many - and which - of the
10 possible buttons are displayed. This is useful if you want to display read-only actions
only (no Edit, Post, Cancel, Insert and Delete for example).
The TIWDBNavigator.CustomImages property specifies custom images (either a
Filename or URL) for each of the 10 buttons, both in enabled and in disabled ways.
The TIWDBNavigator.Confirmations property can be used to enter special confirmation
messages for each of the 10 actions. Three message have been included already, for the
Cancel, Delete and Post actions. You can translate these messages, or add other
messages as well.
The TIWDBNavigator.Orientation property can switch between a orHorizontal or
orVertical orientation (looks funny at first sight).

Each button on the TIWDBNavigator component has its own OnClick event handler. Or
more specifically, the TIWDBNavigator has an OnCancel, OnDelete, OnEdit, OnFirst,
OnInsert, OnLast, OnNext, OnPost, OnPrior and OnRefresh event handler.
These events are nice to write code for. However, you must realise that each of these
events results in a message being posted to the server, and response being sent back to
the client.

TIWDBText
The TIWDBText component is just a data-aware version of the TIWText component,
which can be used to display raw HTML from a database field (which is useful if you
have a database table that actually contains string or memo fields that are filled with
"raw" HTML that you want to display as it was meant to be).

TIWDBRadioGroup
The TIWDBRadioGroup component is a data aware TIWRadioGroup control.

Delphi Win32 Web Development 8. IntraWeb and AJAX

Bob Swart (Bob@eBob42.com) - 58 - February 2011

Continued Demo
Let's continue with our example and place IW Data controls on the IntraWeb Application
Form. Start with a TIWDBNavigator and TIWDBGrid component. Set the Align property
of the TIWDBNavigator to alTop, and finally set the Align property of the TIWDBGrid to
alTop (or alClient if you want).

To make a connection with the data module, we need to add the UserSessionUnit to the
uses clause (using Alt+F11).

Delphi Win32 Web Development 8. IntraWeb and AJAX

 Bob Swart Training & Consultancy - 59 - www.drbob42.com

After this step, we can connect the DataSource property of the TIWDBNavigator and the
TIWDBGrid to IWUserSession->dsEmployees.

Note that we don't see any data at design-time, like we're used to in Delphi, not even if
the datasets are made active. This is something to get used to, but remember that the
main purpose of IntraWeb is to produce run-time HTML, not to provide a "live" design-
time view as well (it would be nice, but is certainly not necessary in my view).

Also note that it's generally not a good idea to actually activate the datasets at design-
time, since this may mean that the project gives long delays when you try to open it
and the database is unavailable (for example if you open the project on a disconnected
client). The best way is to activate the TSQLConnection when the session is started and
the data module is created. In fact, if you activate the cdsEmployees then this will set
the entire chain in motion, so the only thing we need is the following:

procedure TIWForm1.IWAppFormCreate(Sender: TObject);
begin
 UserSession.cdsEmployees.Active := True
end;

Note that we need to add the ServerController unit to the uses clause in order to be
able to call the UserSession function.

Alternately, you can activate the cdsEmployees when the user session is created (which
happens before the main form is created), as follows in the UserSessinUnit.pas:

procedure TIWUserSession.IWUserSessionBaseCreate(Sender: TObject);
begin
 cdsEmployees.Active := True;
end;

Go to the TIWDBGrid component, and set the dbIndicator subproperty of the Options
property to True, so we can always see the current record in the grid.

Now, compile and run the application, and view http://localhost:8888 in the browser to
get the following result:

Delphi Win32 Web Development 8. IntraWeb and AJAX

Bob Swart (Bob@eBob42.com) - 60 - February 2011

The problem may be caused by the fact that the DBX4 driver dbxmss.dll cannot be
found by the IntraWeb application. We can find and copy the DBX4 driver dbxmss.dll
from C:\Program Files\Embarcadero\RAD Studio\8.0\bin to the current application
directory and restart it (the executable), before clicking on restart in the browser.

However, chances are that the problem will persist after copying the dbxmss.dll to your
application directory. In that case, it’s good to realise that dbExpress may require COM
initalization when talking to SQL Server, so in the ServerController unit we should select
the Server Controller and set the property ComInitialization to ciMultiThreaded.That will
solve the error and present you with the following output:

Delphi Win32 Web Development 8. IntraWeb and AJAX

 Bob Swart Training & Consultancy - 61 - www.drbob42.com

The problem with the layout (horizontal scrollbar!) is caused by the Photo field, which is
not shown as image but as quite long binary field.
We should remove some fields from the TIWGrid. This can be done at several levels: in
the TIWGrid, in the TClientDataSet (using the Fields Editor), in the TSQLDataSet (again
in the Fields Editor) or in the original SQL. The best way is to eliminate unwanted fields
as soon as possible, so we should change the SQL to a query selecting only a few fields
with the following command:

This gives the following result:

Delphi Win32 Web Development 8. IntraWeb and AJAX

Bob Swart (Bob@eBob42.com) - 62 - February 2011

TIWDBGrid Usage
By default, the TIWDBGrid is only suited to present data in a read-only way: there is no
direct way to edit the data. There used to be an indirect way, which I will demonstrate,
but which is no longer working.
But first, let's perform some general TIWDBGrid configuration steps. We can use the
Caption property to set a title on top of the IWDBGrid like “Employees”, and we can use
the FooterRowCount property to add additional rows at the bottom of the grid (for
summary information for example). After the data has been rendered into the cells the
TIWDBGrid will begin rendering the footer rows by starting with negative row counts,
counting from -FooterRowCount to -1 for the last row. So, set the FooterRowCount
property to 1, and implement the OnRenderCell event handler as follows:

procedure TIWForm1.IWDBGrid1RenderCell(ACell: TIWGridCell;
 const ARow, AColumn: Integer);
begin
 if ARow = -1 then // Footer
 if AColumn = 0 then
 ACell.Text := 'The footer of the TIWDBGrid'
end;

We can specify the background colour of the grid with the BGColor property (for
example to $00FFFFCC). A nice effect can be obtained by setting the RowAlternateColor
property to another value (for example $00CCFFFF), in order to give alternate rows
different colours. Also, the RowCurrentColor can be used to specify the colour of the
current selected row (for example $00CCCCFF).
Also, if we've set the RollOver property to True, then the row where the mouse is over
will be shown with a certain colour indicated by the value of RollOverColor (for example
$00FFCCFF).

We can configure the way the TIWDBGrid refreshes itself with the RefreshMode
property. Values can be rmAutomatic (data will be refreshed on each render request
unless the dataset is in edit or insert mode), rmAlways (data will be refreshed on every
render request. If the dataset is in edit or insert mode an exception will be raised), or
rmManual (data will be refreshed only when the RefreshData method is explicitly
called). Note that only the data inside the grid itself is refreshed, but never the rows of
the dataset itself.

In order to configure the individual columns of the grid, we need to click on the
Columns property of the TIWDBGrid component to start the IWDBGridColumns editor.
Using this dialog, we can add explicit columns to the IWDBGrid (which by default will
show all fields, but if you add one or more columns it will only show the persistent
columns). For our example, I want to use five columns, so press the <insert> key five
times. Select each of the TIWDBGridColumn components in turn, and connect their
DataFields to the following fields: FirstName, LastName, Address, City and Country
(skipping the EmployeeID and BirthDate fields).

Delphi Win32 Web Development 8. IntraWeb and AJAX

 Bob Swart Training & Consultancy - 63 - www.drbob42.com

Note that for a real-world example you may want or have to add all fields and connect
them all to one of the fields of the Employees table, but I only want to show the
techniques here, so I don't need them all.
Each of the individual column fields has a number of useful properties, such as the
Visible property (in case you've changed your mind and decided not to show the
EmployeeID field after all). Another useful property is the LinkField property, which can
be used if you want to turn a field of the table (i.e. a column of the grid) to a set of
clickable values. If you specify a value for the LinkField property, then the value (for
example of the FirstName field) will turn into a clickable link, and when the user clicks
on it, then the value of the LinkField is returned with the special click event. If you've
just hidden the EmployeeID field, then it may be a good idea to use the Employees ID
field as LinkField for the FirstName field for example (assuming Name is unique).
The result of this all, with the first record being the current record, and mouse cursor
not over a record, can be seen below:

The only downside is that nothing happens if we click on the link for the FirstName
column, because we still have to implement the OnClick event handler for the FirstName
TIWDBGridColumn. This can be implemented - hardcoded - as follows:

procedure TIWForm1.IWDBGrid1Columns0Click(ASender: TObject;
 const AValue: String);
begin
 WebApplication.ShowMessage(AValue);
end;

Note that this only works for the FirstName column, since the other columns do not
have a LinkField defined, and hence will not be turned into a hyperlink representation.
Apart from the OnClick event handler, the TIWDBGridColumns also have an OnTitleClick
event handler. This one can be used to sort the table on that particular field for example
(sharing the same code for all columns):

Delphi Win32 Web Development 8. IntraWeb and AJAX

Bob Swart (Bob@eBob42.com) - 64 - February 2011

procedure TIWForm1.IWDBGrid1ColumnsTitleClick(Sender: TObject);
begin
 UserSession.cdsEmployees.IndexFieldNames :=
 TIWDBGridColumn(Sender).DataField
end;

It helps if you also specify in the footer on which field the grid is sorted:

procedure TIWForm1.IWDBGrid1RenderCell(ACell: TIWGridCell;
 const ARow, AColumn: Integer);
begin
 if ARow = -1 then
 if AColumn = 0 then
 if UserSession.cdsEmployees.IndexFieldNames <> '' then
 ACell.Text := 'Sorted by ' + UserSession.cdsEmployees.IndexFieldNames
end;

The result is a grid that can be sorted by column (like City), uses alternating colours, as
well as a different colour to indicate the current or mouseover (third row) rows:

There's one more thing left to do: turn this grid into a way to edit the fields as well, for
example the Price (which is still empty at this time). For this, we again need to look at
the TIWDBGridColumns, and specifically to the Control property.

In case of the LastName, I want to edit it, so we need a TIWDBEdit component. Just
place it somewhere on the form, since it will be "controlled" by the grid. Make sure to
point the DataSource property to the IWUserSession->cdsEmployees, and the DataField
to LastName.

Now, open up the Columns property editor from the TIWDBGrid again, select the Price
column, and point its Control property to the TIWDBEdit.

Delphi Win32 Web Development 8. IntraWeb and AJAX

 Bob Swart Training & Consultancy - 65 - www.drbob42.com

This will result in the editbox being displayed next to the (original) value in the column.
The user can now make changes to the field value, and move to another record or
explicitly post the value to the ClientDataSet.

Note by the way that we are using a dbExpress dataset (via the TDataSetProvider and
TClientDataSet), so we have to make sure that all Posts done to the TClientDataSet are
only done in memory, and still have to be applied to the underlying database using the
ApplyUpdates method of the TClientDataSet. This is needed in both the OnAfterPost and
the OnAfterDelete event handlers of the TClientDataSet, since these are the two
methods that can make changes:

procedure TIWUserSession.cdsEmployeesAfterPostOrDelete(DataSet: TDataSet);
begin
 (DataSet as TClientDataSet).ApplyUpdates(0)
end;

The result is a TIWDBGrid where we can edit the Price field of the current record.

If you don't like the fact that we still see the original value next to the TIWDBEdit box,
then you can write some additional code in the OnRenderCell event handler, for
example as follows (note the use of the RowIsCurrent method that I can call to
determine if we've in the current row of the grid):

procedure TIWForm1.IWDBGrid1RenderCell(ACell: TIWGridCell;
 const ARow, AColumn: Integer);
begin
 if ARow = -1 then // Footer
 begin
 if AColumn = 0 then
 if UserSession.cdsEmployees.IndexFieldNames <> '' then
 ACell.Text := 'Sorted by ' + UserSession.cdsEmployees.IndexFieldNames
 end

Delphi Win32 Web Development 8. IntraWeb and AJAX

Bob Swart (Bob@eBob42.com) - 66 - February 2011

 else
 if IWDBGrid1.RowIsCurrent then // current row ??
 if AColumn = 1 then ACell.Text := '' // clear, only show Control
end;

This will make sure that the column only shows the TIWDBEdit, and no text on the left
side of it.

Unfortunately, editing values in the IWDBGrid will have no effect when posting the
modified values (this used to work fine with previous versions). Using the IWDBEdit
controls without the IWDBGrid works just fine, fortunately.
The only step needed to make the example work – with a stand-alone TIWButton – is to
remove the TIWDBEdit button from the Control reference of the Price column, and let
the TIWDBEdit control remain visible on the Application Form.

Delphi Win32 Web Development 8. IntraWeb and AJAX

 Bob Swart Training & Consultancy - 67 - www.drbob42.com

Sharing VCL data modules with VCL for the Web
One of the big advantages of VCL for the Web (aka IntraWeb) is the fact that you can
reuse existing VCL data modules, as part of the UserSessionUnit.
The trick is as follows: in your project group that contains the VCL application (with the
data module), create a new VCL for the Web application, and make sure to check the
"Create User Session" option, so a UserSessionUnit.pas file is created with your project
as well.
When the new VCL for the Web project is created, right-click on the project target and
select Add... to add a new file to the project. In the dialog that follows, select the VCL
data module from your existing VCL project.
Then, check the main project file and make sure the code to automatically create the
data module is removed (since we cannot have just one data module, but we must have
one for each incoming request):

//Application.CreateForm(TDataModule1, DataModule1);

This is the first step in sharing the single data module in both the VCL Win32 / .NET and
the VCL for the Web application.

Once the VCL data module is added to your VCL for the Web project, open the
UserSessionUnit.pas file. Press Alt+F11 to make sure the VCL data module is added to
the uses clause of the UserSessionUnit.pas unit.
Note that inside the UserSessionUnit unit, the TIWUserSession class is already derived
from a TIWUserSessionBase and represented as a data module.
However, this is {b}not{/b} the data module you want to use, since that won't allow
you to share your business logic between the VCL Win32 / .NET and VCL for the Web
application.
Instead, we should add a field to the TIWUserSession for your data module, and
implement a constructor of the TIWUserSession that will create the data module, as
follows:

type
 TIWUserSession = class(TIWUserSessionBase)
 private
 { Private declarations }
 public
 { Public declarations }
 MyDataModule: DataMod.TDataModule1;
 constructor Create(AOwner: TComponent); override;
 end;

The implementation of the constructor is as follows:

constructor TIWUserSession.Create(AOwner: TComponent);
begin
 inherited;
 MyDataModule := DataMod.TDataModule1.Create(Self);
end;

This is the second step, but we're not done yet.

In our VCL for the Web Forms, we obviously want to connect to the DataModule at
design-time, and don't want to write complex code to connect to the
UserSession.MyDataModule.whatever datasets and fields.
For this, we usually use the global DataModule1 instance variable in the data module
unit, declared as follows:

var
 DataModule1: TDataModule1;

Delphi Win32 Web Development 8. IntraWeb and AJAX

Bob Swart (Bob@eBob42.com) - 68 - February 2011

However, that's not a good idea in this case, since there can be many instances of the
data module (which is likely since the VCL for the Web application will receive many
incoming requests, each having a User Session with a unique instance of the Data
Module).

So using the global variable is a no-no here. Instead, we should change this to a
function that will return the specific field from the UserSession, as follows:

{$IFDEF IW}
function DataModule1: TDataModule1;
{$ELSE}
var
 DataModule1: TDataModule1;
{$ENDIF}

And now we need to implement that function in the implementation section of the Data
Module, as follows:

implementation

{$R *.dfm}

{$IFDEF IW}
uses
 ServerController, UserSessionUnit;

function DataModule1: TDataModule1;
begin
 Result := UserSession.MyDataModule
end;
{$ENDIF}

Now, we can add the Data Module unit to the uses clause of our IntraWeb Forms, and
use the tables, queries, dataset and data sources in our IntraWeb code.

Just make sure to define IW when compiling the VCL for the Web edition of the data
module, and remove that define when you compile the regular Win32 or .NET version.

The best way is to define IW in the "Conditional defines" box of the Project Options for
the IntraWeb application, so it's only used in that case (beware that you still need to do
a Build All if you switch from one project to another, since the Conditional define is not
identified as a change in source code by the compiler; but that's another story).

Pool Data Connections
Another useful feature of VCL for the Web is the ability to pool data connections. This
means that instead of creating instances of data modules for each user session, we
maintain a pool of data modules, and each user can grab an instance from the pool
when it needs one. This keeps the number of (open) connections to your database lower
compared to a situation where every user session has one.

The good news is that IntraWeb offers this ability out-of-the-box, with the Pool Data
Connections check box in the New VCL for the Web Application Wizard (see the
screenshot on page 55 for example). The bad news is that it’s not easy to add this
ability later (if you don’t know what to add). Which is why I will now create a new
project, using the Pool Data Connections option enabled, and then explain what it
consists of, how it works, and how we can change existing projects – that were created
without the Pool Data Connections option enabled – to support the pooling of data
connections as well.

Delphi Win32 Web Development 8. IntraWeb and AJAX

 Bob Swart Training & Consultancy - 69 - www.drbob42.com

If you create a new VCL for the Web project, using the Pool Data Connections as well as
the Create User Session options, then the result is a project file, as well as a
DatamoduleUnit, a ServerController unit, a main IntraWeb form unit and a
UserSessionUnit.

DatamoduleUnit
The DatamoduleUnit is new compared to generating the project without the Pool Data
Connections option checked. The contents of this unit, however, are very simple, and
even contain IFDEFs to support CLX (for cross-platform projects, last supported by
Delphi 7 and Kylix 3).

unit DataModuleUnit;
interface
uses
 {$IFDEF Linux}QForms, {$ELSE}Forms, {$ENDIF}
 SysUtils, Classes;

type
 TDataModule1 = class(TDataModule)
 private
 public
 end;

implementation

{$R *.dfm}

end.

I guess it doesn’t hurt to have the Linux IFDEF in there, although IntraWeb itself no
longer supports Kylix (so it has no additional benefit either).
In fact, this DatamoduleUnit is no different from one of the data modules that we could
share from our existing Win32 projects (see the “Sharing VCL data modules with VCL for
the Web” topic we just covered). So feel free to remove the DatamoduleUnit from your
project, and just replace it with a real data module unit.

ServerController
Where the DataModuleUnit was just an example unit with an empty data module, the
actual Pool Data Connection functionality is contained within the Server Controller unit.
The new implementation is as follows:

unit ServerController;
interface
uses
 SysUtils, Classes, IWServerControllerBase, IWBaseForm, HTTPApp,
 // For OnNewSession Event
 UserSessionUnit, IWApplication, IWAppForm, DataModuleUnit, IWDataModulePool;

type
 TIWServerController = class(TIWServerControllerBase)
 Pool: TIWDataModulePool;
 procedure IWServerControllerBaseNewSession(ASession: TIWApplication;
 var VMainForm: TIWBaseForm);
 procedure IWServerControllerBaseCreate(Sender: TObject);

 procedure PoolCreateDataModule(var ADataModule: TDataModule);
 procedure PoolFreeDataModule(var ADataModule: TDataModule);
 private

 public
 end;

Delphi Win32 Web Development 8. IntraWeb and AJAX

Bob Swart (Bob@eBob42.com) - 70 - February 2011

 function UserSession: TIWUserSession;
 function IWServerController: TIWServerController;
 function LockDataModule: TDataModule1;
 procedure UnlockDataModule(ADataModule: TDataModule1);

implementation

{$R *.dfm}

uses
 IWInit, IWGlobal;

function UserSession: TIWUserSession;
begin
 Result := TIWUserSession(WebApplication.Data);
end;

function IWServerController: TIWServerController;
begin
 Result := TIWServerController(GServerController);
end;

procedure TIWServerController.IWServerControllerBaseNewSession(
 ASession: TIWApplication; var VMainForm: TIWBaseForm);
begin
 ASession.Data := TIWUserSession.Create(nil);
end;

procedure TIWServerController.IWServerControllerBaseCreate(Sender: TObject);
begin
 Pool.Active := True;
end;

procedure TIWServerController.PoolCreateDataModule(var ADataModule: TDataModule);
begin
 ADataModule := TDataModule1.Create(nil);
end;

procedure TIWServerController.PoolFreeDataModule(var ADataModule: TDataModule);
begin
 FreeAndNil(ADataModule);
end;

function LockDataModule: TDataModule1;
begin
 Result := TDataModule1(TIWServerController(GServerController).Pool.Lock);
end;

procedure UnlockDataModule(ADataModule: TDataModule1);
var
 LTemp: TDataModule;
begin
 LTemp := ADataModule;
 TIWServerController(GServerController).Pool.Unlock(LTemp);
end;

initialization
 TIWServerController.SetServerControllerClass;
end.

Delphi Win32 Web Development 8. IntraWeb and AJAX

 Bob Swart Training & Consultancy - 71 - www.drbob42.com

Compared to the TIWServerController without Pool Data Connection functionality, we
have a field Pool of type TIWDataModulePool and three new methods:
IWServerControllerBaseCreate (so set the Pool.Active property to True) and the
PoolCreateDataModule and PoolFreeDataModule methods to create and free an instance
of a pooled data module.
There are two internal new functions that perform the work: LockDataModule and
UnlockDataModule. These are used to ensure that only one user (session) can use a
data module at the same time in the corresponding thread for that request.
The Pool component can be seen if you look at the ServerController at design-time. It
has a property called PoolCount – set to 20 by default – and an Active property, set to
False by default. The Active property it set to True in the IWServerControllerBaseCreate
method, as mentioned before.

Using Data Pooling
In order to use the data pooling, we must call the LockDataModule function to get our
hands on an instance of a pooled data module, and lock it for our use. To release it to
the pool again, we need to call the UnlockDataModule, passing the data module as
argument. Note that calling the UnlockDataModule must not be done too soon,
otherwise rendering of your data will fail.
The best way is to call the LockDataModule function in the OnCreate event of your
IntraWeb form, and the UnlockDataModule function in the OnAfterRender event of the
IntraWeb form – to ensure that everything is already rendered, so it’s time to release
the data module to the pool again.
In Delphi code, this pattern look as follows (with “dm” being a data module field of the
IntraWeb form):

type
 TIWForm1 = class(TIWAppForm)
 procedure IWAppFormCreate(Sender: TObject);
 procedure IWAppFormAfterRender(Sender: TObject);
 public
 dm: TDataModule1;
 end;

The implementation of the OnCreate and OnAfterRender is as follows:

procedure TIWForm5.IWAppFormCreate(Sender: TObject);
begin
 dm := LockDataModule;
 // use dm, assign data sources
end;

procedure TIWForm5.IWAppFormAfterRender(Sender: TObject);
begin
 // un-use dm, set datasources to nil again
 UnlockDataModule(dm);
end;

In the OnCreate, you can start to use the data module, using the data sets or data
sources on it to assign to the visual IntraWeb data-aware controls for example. And in
the OnAfterRender, you can un-assign these properties (set the datasources to nil again
for example) before you release the data module to the pool again.

In order for this code to compile, you must add the DatamoduleUnit as well as the
ServerController unit to the uses clause of the IntraWeb form, in order to find both the
LockDataModule and UnlockDataModule functions (in the ServerController unit) and the
TDataModule1 type (in the DatamoduleUnit).

Delphi Win32 Web Development 8. IntraWeb and AJAX

Bob Swart (Bob@eBob42.com) - 72 - February 2011

Custom Data Pooling
Now, let’s take this example one step further and prepare the data pooling for re-used
existing VCL data modules. In that case, we need to remove the DatamoduleUnit and
replace the TDataModule1 type with our own custom data module (say of type
TMyComplexDataModule).
The ServerController needs an adjustment of the uses clause (replace DatamoduleUnit
with the unit name of the custom data module), as well as a replacement of the
TDataModule1 type with the TMyComplexDataModule type. This affects the
LockDataModule, UnlockDataModule as well as the PoolCreateDataModule and
PoolFreeDataModule methods of the ServerController.

Apart from that, we also need to make the same changes to the IntraWeb form that
uses the new data module. But after that’s done, we can now not only share but also
pool our own custom VCL data modules in VCL for the Web applications (while the same
data modules are still used as normal data modules in the VCL GUI applications).

Summary
In this section I’ve explained and demonstrated how to use IntraWeb in Application
Mode. I’ve covered Application Forms, the Server Controller properties and events, the
IWApplication properties and methods, IWAppForms, how to navigate and pass
information around, how to do session management using the UserSession, how to use
data modules (and re-use existing data modules in your User Session), and also the
IntraWeb controls from the IW Standard, IW Standard 3.2, IW Data Controls and IW
Data 3.2, plus the use of Layout Managers (mainly for the HTML 3.2 pages).
I’ve also described how the data connection pooling works, to explain how you can add
this to your existing Server Controllers (if you didn’t add pooling from the start), and
how to extend it by pooling custom data modules.
The next section will cover more advanced topics such as the IntraWeb Client Side
support, the combination of IntraWeb with ActiveForm, AJAX support in IntraWeb
applications, and finally IntraWeb Custom Components.

Delphi Win32 Web Development 8. IntraWeb and AJAX

 Bob Swart Training & Consultancy - 73 - www.drbob42.com

4. IntraWeb and AJAX
IntraWeb version 9 introduced full AJAX support to IntraWeb developers. A large
number of visible IW controls now have OnAsync events that fire asynchronous and can
be used to update certain parts of your page without the entire page being refreshed.
Note however, that the session counter is still increased! So now more than ever, the
use of the Back button is prohibited!

AJAX = Asynchronous
AJAX is not really a new invention, but stands for Asynchronous Javascripting And XML.
Fortunately for IntraWeb developers, you really do not have to know a lot about either
JavaScript or XML in order to use AJAX. What it comes down to is that an AJAX event is
happening asynchronously, without the need to send a complete request or the need to
refresh the entire page. This means only a partial request will be made, and a part of
the page will be refreshed, resulting in a more responsive and generally more pleasant
user experience (note that this works better than the previous partial update feature of
IntraWeb, which is no longer covered in this manual).
IntraWeb supports AJAX events in a number of IntraWeb components through the
OnAsync events and – if present – the SubmitOnAscynEvent property (by default set to
True).

OnAsync
The power of AJAX is brought to us through the ease of the OnAsync event handler. For
example, the TIWButton component has the OnAsyncClick and OnAsyncDoubleClick
event handlers that we can implement using normal Delphi code.
As a simple example, place a TIWListbox, TIWEdit and two TIWButtons on an IntraWeb
Application Form.

One button has a caption of Click, and implements the normal OnClick event, while the
other is given a Caption of AJAX, and implements the OnAsyncClick event:

procedure TIWForm1.IWButton1Click(Sender: TObject);
begin
 IWListbox1.Items.Add(IWEdit1.Text)
end;

procedure TIWForm1.IWButton2AsyncClick(Sender: TObject; EventParams: TStringList);
begin
 IWListbox1.Items.Add(IWEdit1.Text)
end;

Delphi Win32 Web Development 8. IntraWeb and AJAX

Bob Swart (Bob@eBob42.com) - 74 - February 2011

If we now enter “Delphi and AJAX” and click on the Click button, the listbox will contain
the string “Delphi and AJAX” and the session counter will have the value “1” (right after
the EXEC part of the URL):

If we click on the AJAX button, then the contents of the IWEdit will again be added to
the IWListbox, but there will be no full request to the server. As a result, the session
counter in the browser will stick at 1, but at the server it’s already at 2.

We can prove this, by clicking on the Click button again, which will send a full request
to the server, and add the text to the listbox once again, but also returns with the
session counter of 3 (and not 2, since it already was 2 after the AJAX event).

Delphi Win32 Web Development 8. IntraWeb and AJAX

 Bob Swart Training & Consultancy - 75 - www.drbob42.com

OnAsync Events
Not all components from the IW Standard category support OnAsync events.

The TIWButton control supports 4 AJAX events: OnAsyncClick, OnAsyncDoubleClick,
OnAsyncEnter and OnAsyncExit.
The TIWCheckBox and TIWRadioButton controls support 12 AJAX events:
OnAsyncChange, OnAsyncClick, OnAsyncEnter, OnAsyncExit, OnAsyncKeyDown,
OnAsyncKeyPress, OnAsyncKeyUp, OnAsyncMouseDown, OnAsyncMouseMove,
OnAsyncMouseOut, OnAsyncMouseOver, and OnAsyncMouseUp.
TIWComboBox, TIWListBox and TIWMemo support 14 AJAX events: OnAsyncChange,
OnAsyncClick, OnAsyncDoubleClick, OnAsyncEnter, OnAsyncExit, OnAsyncKeyDown,
OnAsyncKeyPress, OnAsyncKeyUp, OnAsyncMouseDown, OnAsyncMouseMove,
OnAsyncMouseOut, OnAsyncMouseOver, OnAsyncMouseUp and OnAsyncSelect.
The TIWEdit and TIWTimeEdit controls support 13 AJAX events: OnAsyncChange,
OnAsyncClick, OnAsyncDoubleClick, OnAsyncEnter, OnAsyncExit, OnAsyncKeyDown,
OnAsyncKeyPress, OnAsyncKeyUp, OnAsyncMouseDown, OnAsyncMouseMove,
OnAsyncMouseOut, OnAsyncMouseOver, and OnAsyncMouseUp.
TIWImage, TIWImageFile and TIWImageButton support 6 AJAX events: OnAsyncClick,
OnAsyncMouseDown, OnAsyncMouseMove, OnAsyncMouseOut, OnAsyncMouseOver, and
OnAsyncMouseUp.
The TIWLabel control supports 6 AJAX events: OnAsyncClick, OnAsyncMouseDown,
OnAsyncMouseMove, OnAsyncMouseOut, OnAsyncMouseOver, and OnAsyncMouseUp.
TIWLink supports only one AJAX event: OnAsyncClick.
The TIWTimer control supports only one AJAX event: OnAsyncTimer.
The TIWTabControl supports only one AJAX event: OnAsyncChange.

While the list of OnAsync events may be useful, a more useful overview is the list of the
different OnAsync events as well as the components (from the IW Standard category)
that support them.

AJAX Events IW Standard Components
OnAsyncChange TIWCheckBox / TIWRadioButton

TIWComboBox / TIWListBox / TIWMemo
TIWEdit / TIWTimeEdit
TIWTabControl

OnAsyncClick TIWButton
TIWCheckBox / TIWRadioButton
TIWComboBox / TIWListBox / TIWMemo
TIWEdit / TIWTimeEdit
TIWImage / TIWImageFile / TIWImageButton
TIWLabel
TIWLink

OnAsyncDoubleClick TIWButton
TIWComboBox / TIWListBox / TIWMemo
TIWEdit / TIWTimeEdit

OnAsyncEnter TIWButton
TIWCheckBox / TIWRadioButton
TIWComboBox / TIWListBox / TIWMemo
TIWEdit / TIWTimeEdit

OnAsyncExit TIWButton
TIWCheckBox / TIWRadioButton
TIWComboBox / TIWListBox / TIWMemo
TIWEdit / TIWTimeEdit

OnAsyncSelect TIWComboBox / TIWListBox / TIWMemo
OnAsyncTimer TIWTimer

Delphi Win32 Web Development 8. IntraWeb and AJAX

Bob Swart (Bob@eBob42.com) - 76 - February 2011

AJAX Key Events IW Standard Components
OnAsyncKeyDown TIWCheckBox / TIWRadioButton

TIWComboBox / TIWListBox / TIWMemo
TIWEdit / TIWTimeEdit

OnAsyncKeyUp TIWCheckBox / TIWRadioButton
TIWComboBox / TIWListBox / TIWMemo
TIWEdit / TIWTimeEdit

OnAsyncKeyPress TIWCheckBox / TIWRadioButton
TIWComboBox / TIWListBox / TIWMemo
TIWEdit / TIWTimeEdit

AJAX Mouse Events IW Standard Components
OnAsyncMouseDown TIWCheckBox / TIWRadioButton

TIWComboBox / TIWListBox / TIWMemo
TIWEdit / TIWTimeEdit
TIWImage / TIWImageFile / TIWImageButton
TIWLabel

OnAsyncMouseUp TIWCheckBox / TIWRadioButton
TIWComboBox / TIWListBox / TIWMemo
TIWEdit / TIWTimeEdit
TIWImage / TIWImageFile / TIWImageButton
TIWLabel

OnAsyncMouseMove TIWCheckBox / TIWRadioButton
TIWComboBox / TIWListBox / TIWMemo
TIWEdit / TIWTimeEdit
TIWImage / TIWImageFile / TIWImageButton
TIWLabel

OnAsyncMouseOver TIWCheckBox / TIWRadioButton
TIWComboBox / TIWListBox / TIWMemo
TIWEdit / TIWTimeEdit
TIWImage / TIWImageFile / TIWImageButton
TIWLabel

OnAsyncMouseOut TIWCheckBox / TIWRadioButton
TIWComboBox / TIWListBox / TIWMemo
TIWEdit / TIWTimeEdit
TIWImage / TIWImageFile / TIWImageButton
TIWLabel

For the components in the IW Data Controls category a similar distribution of OnAsync
events exists. Note that the TIWDBNavigator and TIWDBGrid do not support any
OnAsync events, however.
The components in the IW Standard 3.2 or IW Data 3.2 also do not support OnAsync
events (due to the lack of the XMLHttpRequest support inside the HTML 3.2 browser).

EventParams
All OnAsync events have the following signature:

procedure TIWForm.IWControl1AsyncXXX(Sender: TObject;
 EventParams: TStringList);
begin

end;

This means that all information will be passed to the event handler inside the
EventParams argument. The TStringList contains name=value pairs, including in all
cases the callback (the name of the event called) and often also a x and y coordinate, a
which value (the key or mouse button pressed) and optionally modifiers.

Delphi Win32 Web Development 8. IntraWeb and AJAX

 Bob Swart Training & Consultancy - 77 - www.drbob42.com

The following table shows the different name=value pairs that are passed inside the
EventParams for the different OnAsync events. Note that this list may change in
different versions of IntraWeb (and please let me know if I’ve missed one or more).

AJAX Event EventParams fields
OnAsyncChange IWCONTROLNAME=

callback=
OnAsyncClick callback=

x=
y=
which=
modifiers=

OnAsyncDoubleClick callback=
x=
y=
which=
modifiers=

OnAsyncEnter IWCONTROLNAME=
callback=

OnAsyncExit IWCONTROLNAME=
callback=

OnAsyncSelect IWCONTROLNAME=
Callback=

OnAsyncTimer callback=
AjaxRequestUniqueId=

When I write IWCONTROLNAME= this means that the complete text value of the
control, or the selected index is returned as value for the name of the control (like
IWEDIT1=Hello, world or IWLISTBOX1=2). This value is only present if the
SubmitOnAscynEvent property it set to True.

AJAX Key Events EventParams fields
OnAsyncKeyDown IWCONTROLNAME=

callback=
x=
y=
which=
modifiers=

OnAsyncKeyUp IWCONTROLNAME=
callback=
x=
y=
which=
modifiers=

OnAsyncKeyPress IWCONTROLNAME=
callback=
x=
y=
which=
modifiers=

The x and y contain the coordinates on screen, and the which key contains the ASCII
value of the key that was pressed.
The value of modifiers can be CTLR_MASK, ALT_MASK, or SHIFT_MASK (the commas for
CTRL and ALT are included!). .Pressing the right Alt key (with the “Alt Gr” caption) has
the effect that ALT_MASK,CTRL_MASK, is given, which may not be entirely correct.

Delphi Win32 Web Development 8. IntraWeb and AJAX

Bob Swart (Bob@eBob42.com) - 78 - February 2011

AJAX Mouse Events EventParams fields
OnAsyncMouseDown callback=

x=
y=
which=
modifiers=

OnAsyncMouseUp callback=
x=
y=
which=
modifiers=

OnAsyncMouseMove callback=
x=
y=

OnAsyncMouseOver callback=
x=
y=

OnAsyncMouseOut callback=
x=
y=

The values of x and y are the screen coordinates where the mouse was present when
the OnAsync event was triggered. The modifiers value can be ALT_MASK, CTRL_MASK,
or SHIFT_MASK again. The ALT_MASK and CTRL_MASK include a comma, the
SHIFT_MASK does not.

Working with EventParams
In order to retrieve the contents of the EventParams, I’m using the following code in my
IntraWeb forms. First, I’ve defined a number of constants, so I don’t have to retype the
callback, x, y, which and modifiers strings (and make accidental typing mistakes):

 const
 callback = 'callback';
 x = 'x';
 y = 'y';
 which = 'which';
 modifiers = 'modifiers';

Now, inside an OnAsync event, for example the OnAsyncClick event I can write the
following code to get the X and Y coordinates:

procedure TIWForm2.IWEdit2AsyncKeyPress(Sender: TObject;
 EventParams: TStringList);
begin
 IWMemo1.Text := 'Key [' +
 Chr(StrToIntDef(EventParams.Values[which],32)) +
 '] at (' + EventParams.Values[x] +
 ', ' + EventParams.Values[y] + ')';
end;

This will give you a simple example how to get your hands on the fields of the
EventParams stringlist.

Note that you cannot combine the OnAsyncXXX with the normal OnXXX events: the
OnAsyncXXX will “hide” the normal events (like the OnClick which will no longer fire if
you’ve implemented an OnAsyncClick event handler).

Delphi Win32 Web Development 8. IntraWeb and AJAX

 Bob Swart Training & Consultancy - 79 - www.drbob42.com

OnAsync and Visible
There are a few special circumstances you have to be aware of when using the OnAsync
events of the IntraWeb controls. One of the special cases is the fact that invisible
controls that are not rendered, cannot be made visible in an OnAsync event.
So, if you have a TIWRegion for example, with the Visible property set to False, and you
want to make it visible as the result of an OnAsyncClick event, the following will not
work:

procedure TIWForm2.IWButton3AsyncClick(Sender: TObject;
 EventParams: TStringList);
begin
 IWRegion1.Visible := True;
end;

The problem is that the TIWRegion was already invisible, and by default not rendered.
You will need a real OnClick event to render the control.
Once a control is rendered, it can be made invisible and visible again (that’s no
problem), but the problem is that you cannot show something which isn’t there in the
first place.
The really simple solution to this problem is to set the RenderInvisibleControls property
of the IntraWeb Form or the Region (container) to true. This will ensure that the control
on the form or region is rendered (even when invisible), so the OnAsync event can
make it visible again without having to refresh the entire page.

OnAsync and Disable
If you have a TIWButton which retrieves some data from a database and updates a
number of IntraWeb controls asynchronously inside the OnAsyncClick event, then you
may want to disable the TIWButton or at least prevent it from sending another
asynchronous OnAsyncClick event to the server.
This can be done, but requires two steps: first you need to disable the TIWButton right
after the click, which can be done using JavaScript in the onClick event using the
ScriptEvents:

This will disable the button as soon as you click on it.

Delphi Win32 Web Development 8. IntraWeb and AJAX

Bob Swart (Bob@eBob42.com) - 80 - February 2011

The obvious second step involves enabling the button again. The problem is that the
IntraWeb application at the server side still believes that the button is enabled (since it
was a local JavaScript event that disabled the button), so just setting the Enabled
property of the button to True will not have the desired effect.
In order to “trick” IntraWeb, we have to explicitly set the enabled property to False
(which has no effect) and then back to True again, so the button will be enabled again.

In order to simulate a big task, let’s perform a Sleep(4242) and simulate the situation
in the following OnAsyncClick event:

procedure TIWForm2.IWButton6AsyncClick(Sender: TObject;
 EventParams: TStringList);
begin
 try
 // do some work...
 Sleep(4242);
 finally
 (Sender as TIWButton).Enabled := False;
 (Sender as TIWButton).Enabled := True;
 end;
end;

Summary
In this section I’ve discussed the way IntraWeb implements and supports AJAX
asynchronous event handlers in a very elegant and straightforward way using OnAsync
events with EventParams that contain more details about the event itself.

Delphi Win32 Web Development 9. IntraWeb Custom Components

 Bob Swart Training & Consultancy - 81 - www.drbob42.com

5. IntraWeb and iPhone / iPad
IntraWeb developers are not limited to using only the IntraWeb components that are
delivered with the product. There are also third-party vendors like TMS Software and
Arcana (which has been turned into Open Source in 2008).
TMS Software (http://www.tmssoftware.com) offers a number of IntraWeb components,
including a special TMW IntraWeb iPhone controls pack, which we’ll cover here for
iPhone and iPad web application development.

TMS IntraWeb iPhone Controls Pack
For this section, I’ve used version v1.5.0.0 (Jan 27, 2011) of the TMS IntraWeb iPhone
Controls pack, available from http://www.tmssoftware.com/site/tmsiwiphone.asp. These
controls can work with IntraWeb 10.0.x and 11.0.x, and work with Delphi 7, 2006,
2007, 2009, 2010 and XE. Obviously, I’ll use them with IntraWeb XI in Delphi XE here.

If you have purchased and downloaded the registered version of the TMS IntraWeb
iPhone Controls pack, you need to unzip the iwiphonereg.zip file and place it in a
directory, like C:\Users\Bob\AppData\Roaming\TMS in my case (right next to the
IntraWeb XI directory in the same location).
It’s important to copy tmsdefs11.inc to tmsdefs.inc, otherwise you will get an error
message shortly that the tmsdefs.ini file cannot be found. For Delphi XE, we then need
to compile the IW11iPhoneDXE.dproj run-time package and compile and install the
IW11iPhoneDEDXE.dproj design-time package.

Delphi Win32 Web Development 9. IntraWeb Custom Components

Bob Swart (Bob@eBob42.com) - 82 - February 2011

The installation should show a list of new components:

Finally, make sure to set add the directory of the TMS IntraWeb iPhone controls to your
Library search path using the Tools | Options dialog of Delphi XE. In the Options dialog,
select the Environment Options, Delphi Options, Library page, and then use the little
button on the right of the Library Path to add the directory with the TMS source files to
it, as follows:

Specifying the new search path here ensures that you do not have to update all
projects.

Delphi Win32 Web Development 9. IntraWeb Custom Components

 Bob Swart Training & Consultancy - 83 - www.drbob42.com

The TMS IW iPhone components can be found in the Tool Palette of Delphi XE with the
following alphabetical list of component names and icons:

All components have the TTIWiPhone prefix in their classname. Below, I will first give a
short description of each of these iPhone controls, before building a first little demo
application showing these iPhone controls in practice.
After the first demo, we’ll see some more-or-less useful example applications for the
iPhone, like the list of registered users for an event, my weblog and the game of tic-tac-
toe.

TTIWiPhoneButton
The TTIWiPhoneButton is a button in the iPhone style, with optionally rounded corners,
which can respond to synchronous or asynchronous click events. Apart from Round, the
button can also be Square or in the shape of a Back button. The TIWiPhoneButton can
respond to the OnButtonClick but also the asynchronous OnAsyncButtonClick events.

TTIWiPhoneEmailLabel
The TTIWiPhoneEmailLabel is a special label control that will turn into a “hot” hyperlink
if we assign values to the EmailAddress and optionally CCAddress, BCCAddress, Subject
and Body properties. When you click on it during runtime, the standard iPhone e-mail
application will be started, and all specified property values will be passed on to the e-
mail application.

TTIWiPhoneFooter
The TTIWiPhoneFooter is a special footer control for the bottom of your iPhone form,
which can hold a footer caption and optionally two images (left and right), for which you
can write click events.

Delphi Win32 Web Development 9. IntraWeb Custom Components

Bob Swart (Bob@eBob42.com) - 84 - February 2011

TTIWiPhoneGeolocation
The TTIWiPhoneGeolocation component can be used to determine the current location of
the iPhone. It has one useful event: OnAsyncLocationRetrieved that can be used to
provide feedback if the location is retrieved. Warning: if you have no or limited internet
connection, then using this component will show down the rendering of the page!

TTIWiPhoneHeader
The TTIWiPhoneHeader is a special header control for the top of your iPhone form,
which can contain a caption and two buttons (left and right), for which you can write
click events, for either synchronously or asynchronously button clicks.

TTIWiPhoneList
The TTIWiPhoneList is a list control in the iPhone style (in standard list mode and
settings mode), where each item can have an image, a value, a main caption and a
subtext (notes). We can asynchronously insert or delete items from the list, and
respond to click events in a synchronous and asynchronous way using OnItemClick,
OnImageClick as well as OnAsyncItemClick and OnAsyncImageClick. Apart from these
click events, there are also OnAsyncLoadExtraItems, OnAsyncExtraItemsLoaded, and
OnRenderListItem events.
The individual items of type TiPhonelistItem have Caption, Data (TStringList), Detail,
Image, Name, Notes, Section and Value properties. The events are triggered at the
parent side, passing the ItemIndex of the item or image that was clicked.

The detail information for the items can be shown using the TIWiPhonePageFlip
component.

TTIWiPhoneLocationLabel
The TTIWiPhoneLocationLabel is a special label control that will turn into a “hot”
hyperlink if we assign values to the predefined Location (Latitude and Longitude) and
optionally Destination. When you click on it during runtime, the iPhone maps application
will be started, showing your current location and optionally the destination.

TTIWiPhoneMenu
The TTIWiPhoneMenu is a special footer control that can contain a collection of menu
items with images and text, plus the iPhone style status indicators. We can update the
status of the menu items, and respond to a user click, both synchronous and
asynchronous.
The Items property of the TIWiPhoneMenu control holds the TiPhoneMenuItems which
each contain properties for Caption, Image, IndicatorCaption, IndicatorVisible, Name,
and SelectedImage.
The individual items do not have a click event of their own, but the parent
TTIWiPhoneMenu has the OnItemClick or OnAsyncItemClick events, passing the
ItemIndex of the button that was clicked (starting to count at 0).

TTIWiPhoneOnOffButton
The TTIWiPhoneOnOffButton is a special iPhone style button with an “On” mode and an
“Off” mode, that can be displayed in three styles: normal, system and custom. We can
use the asynchronous events to update the button and to respond to the click events.
Using the OffCaption and OnCaption you can translate the Off and On captions on this
button.
The actual state of the TTIWiPhoneOnOffButton can be retrieved or set using the
ButtonState property, which can be bsOff or bsOn.

Delphi Win32 Web Development 9. IntraWeb Custom Components

 Bob Swart Training & Consultancy - 85 - www.drbob42.com

TTIWiPhonePageFlip
The TTIWiPhonePageFlip is a control that can be used to flip between TIWiPhoneRegion
controls, featuring asynchronous updates. Ideal in combination with the TIWiPhoneList
component to provide details for a list item.
The TTIWiPhonePageFlip has a FrontRegion and a BackRegion property. Both can be
assigned to a TWIWiPhoneRegion control. Switching between the front region and the
back region can be done using the SlideToFront and SlideToBack methods of the
TTIWiPhonePageFlip, or by assigning arFront or arBack to the ActiveRegion property.
The transition can be controlled using AnimationSpeed and AnimationType (which can
be set to atDrop, atFlip, atSlide, atSwing or atTurn).

TTIWiPhonePhoneLabel
This is a special label control that will turn into a “hot” hyperlink if we assign a value to
the TelephoneNumber property. When you click on it during runtime, the iPhone will
make a call to the specified number.

TTIWiPhoneRegion
A region component that we can use to place IntraWeb and TMS iPhone controls, which
automatically shows itself at the correct iPhone, iPod and iPad screen sizes.
The TTIWiPhoneRegion has properties for AutoClientAlignAtRuntime, ClipRegion, Device
(which can be set to iPhone or iPad), DevizeOrientation (oVertical or oHorizontal,
although the iPhone and iPad will automatically cause the orientation to switch),

TTIWiPhoneScrollRegion
This is a special TIWiPhoneRegion component that offers iPhone style scrolling and scroll
indicator, and also keeps the Header and Footer or Menu fixed, so only the content of
the Region itself will scroll.
Note that if you want to display a scrollable list of items, you should consider using a
TTIWiPhoneList on a TTIWiPhoneRegion instead of using a TTIWiPhoneScollRegion.

TTIWiPhoneSMSLabel
This is a special label control that will turn into a “hot” hyperlink if we assign a value to
the SMSNumber property. When you click on it during runtime, the iPhone will start an
SMS message (initially empty) to the specified number.

TTIWiPhoneStyle
The TWITiPhoneStyle component is responsible for the style of the iPhone/iPad
application, and has a number of useful properties that we should set.
The BGColor and BGColorTo properties, default both set to $00D4CCC5 can be used to
set the gradient background color of the page.
The StartupImage can contain the URL for a splash screen that will be used on the
iPhone or iPad when the application starts. Even more useful is the IconImage property
which can be set to the URL of the icon that’s used if we place the IntraWeb application
on the home screen (desktop) of the iPhone. Note that for best results you should use
PNG files, and specify a URL that can be found by the client (i.e. do not use localhost).
The images will be resolved when the application is started and cached (so if you
change the remote image, it will take another startup for the splash screen to be
changed for example).

TTIWiPhoneTrackbar
The TIWiPhoneTrackbas is an iPhone style horizontal trackbar, like a slider control,
which can be updated asynchronously, and can produce both synchronous OnEndDrag
and asynchronous events OnAsyncStartDrag, OnAsyncDrag and OnAsyncEndDrag.

Delphi Win32 Web Development 9. IntraWeb Custom Components

Bob Swart (Bob@eBob42.com) - 86 - February 2011

TMS iPhone Controls Demo
In order to show the TMS IntraWeb iPhone Controls in action, we should create a new
VCL for the Web (IntraWeb) application, and place a TTIWiPhoneStyle control on the
form to ensure that the correct iPhone/iPad styles are used. You can change the
BGColor (top) and BGColorTo (bottom) colours form the default $00D4CCC5 to
something else like clSkyBlue for the BGColorTo.

You should also set the IconImage and StartupImage in case you want other people to
use your application and create a shortcut on their iPhone desktop.

Next, you should place a TIWiPhoneRegion on the form, which will show us the correct
height (355) and width (320) of the browser page in the iPhone or iPod.

Note that there is currently a repaint bug in Delphi XE with IntraWeb XI and the
TIWiPhoneRegion component: when you resize the form, the TIWPhoneRegion will
become invisible (normally, it’s white, but when you resize the form, the form designer
grid will be shown in the location of the TIWiPhoneRegion as well). Just click on where
you think the TIWiPhoneRegion is to select it and show up as a white region again.

With the TIWiPhoneRegion component selected, place a TIWiPhoneHeader component
on the TIWiPhoneRegion. It will automatically be positioned at the top of the
TIWiPhoneRegion. You can configure the TIWiPhoneHeader, for example by changing
the Caption to “iPhone Demo” (don’t make the header caption too long, or it will mess
up the “Home” and “About” buttons that are also placed on the TIWiPhoneHeader).

Delphi Win32 Web Development 9. IntraWeb Custom Components

 Bob Swart Training & Consultancy - 87 - www.drbob42.com

With the TIWiPhoneRegion component selected, also place a TIWiPhoneFooter
component on the TIWiPhoneRegion. It will automatically be positioned at the bottom of
the TIWiPhoneRegion. You can configure the TIWiPhoneFooter by changing the Caption
as well, for example to © 2011 by Bob Swart

Without placing any content in the middle of the TIWiPhoneRegion, we can already
respond to two events: the left button and the right button on the header. The
TIWiPhoneHeader component has no less than four events for them: both synchronous
and asynchronous events. The synchronous events can be handled by implementing the
OnLeftButtonClick and OnRightButtonClick, the more efficient AJAX-based asynchronous
ones using OnAsyncLeftButtonClick and OnAsyncRightButtonClick.

As a first demo, let’s implement the About button (right button click) to put the current
date and time in the Caption of the TIWiPhoneFooter. This can be done as follows using
the synchronous approach:

procedure TIWForm1.TIWIPhoneHeader1RightButtonClick(Sender: TObject);
begin
 TIWiPhoneFooter1.Caption := DateTimeToStr(Now)
end;

Clicking on the right button with this event will cause the entire page to refresh, which
is not always a good idea.
The asynchronous approach is implemented as follows (make sure to remove the
implementation of the synchronous event, as you cannot have both at the same time):

procedure TIWForm1.TIWIPhoneHeader1AsyncRightButtonClick(Sender: TObject;
 EventParams: TStringList);
begin
 TIWiPhoneFooter1.Caption := DateTimeToStr(Now)
end;

Delphi Win32 Web Development 9. IntraWeb Custom Components

Bob Swart (Bob@eBob42.com) - 88 - February 2011

Using the iPhone Simulator on the Mac, we can see the application with the Header,
Footer and two buttons in the header. Clicking on the About button on the right will put
the current date and time in the footer, just as expected:

I leave it as exercise for the reader to compare the behaviour of the synchronous
approach (with a full screen refresh) to the asynchronous version.

Note that the TIWiPhoneFoot can also have two buttons: one on the left and one on the
right. The TIWiPhoneHeader has LeftButton and RightButton properties, consisting of
Appearance, ButtonType, Caption, Font, ImageURL (so you can place small images on
the buttons as well) and the Visible property to control if they are shown or not.
The Appearance subproperty of the LeftButton and RightButton can control the BGColor
and BGColorTo, the disabled colour, the “hot” colour, mirror colour, and a different
colour for each of the borders (top, bottom, leftright, and disabled).
The ButtonType can be set to btBack (the left-pointing shape you see as the “Home”
button in the above screenshots), btDefault (used for the About button on the right),
btRound, or btSquare. Changing the ButtonType will have no effect at design time, but
below you can see the btRound (at the left side) and btSquare (at the right side) on the
Header of the page.

Delphi Win32 Web Development 9. IntraWeb Custom Components

 Bob Swart Training & Consultancy - 89 - www.drbob42.com

The TIWiPhoneFooter does not have a LeftButton and RightButton property, but it offers
a LeftImageURL and a RightImageURL property together with a similar set of click
events: OnLeftImageClick, OnRightImageClick and the asynchronous counterparts
OnAsyncLeftImageClick and OnAsyncRightImageClick.
The button images will not appear at design-time, but an area will appear to indicate
where they will be shown on the footer (so you may want to decrease the size of the
font of the TIWiPhoneFooter or shorten the Caption.

In the OnLeftImageClick and OnRightImageClick events (not the asynchronous ones)
you can also change the LeftImageURL and RightImageURL for a dynamic effect:

procedure TIWForm1.TIWIPhoneFooter1LeftImageClick(Sender: TObject);
begin
 if TIWiPhoneFooter1.LeftImageURL = 'http://192.168.62.42/star_s.png' then
 TIWiPhoneFooter1.LeftImageURL := 'http://192.168.62.42/star.png'
 else TIWiPhoneFooter1.LeftImageURL := 'http://192.168.62.42/star_s.png'
end;

Of course, you should also do some “real” work in these event handlers, but you get the
idea.

Both the TIWiPhoneHeader and TIWiPhoneFooter have a property StatusText which will
not show up at design-time, but will appear on the iPhone at runtime.

Delphi Win32 Web Development 9. IntraWeb Custom Components

Bob Swart (Bob@eBob42.com) - 90 - February 2011

Apart from TMS iPhone controls, we can also place “regular” controls like a TIWEdit and
TIWLabel for example. Place both a TIWEdit and TIWLabel on the TIWiPhoneRegion,
change the Caption of the Label to “What’s your name?” and clear the Text property of
the Edit. Next, place a TIWiPhoneButton component below these two, make it a bit
wider, set the ButtonType property to btRound, and the Caption property to “Say Hello”.
In the OnAsyncButtonClick event handler, we can use the value of the Edit to write a
new caption in the Footer for example, as follows:

procedure TIWForm1.TIWIPhoneButton1AsyncButtonClick(Sender: TObject;
 EventParams: TStringList);
begin
 TIWiPhoneFooter1.Caption := 'Hello ' + IWEdit1.Text
end;

When you run this application and click on the Edit control to enter a name, the iPhone
keyboard will slide-up, allowing you to use the keyboard to enter a name. If you click on
the “Done” button, the keyboard will slide down again.

Delphi Win32 Web Development 9. IntraWeb Custom Components

 Bob Swart Training & Consultancy - 91 - www.drbob42.com

There are also four special label controls included in the TMS iPhone Control pack:
namely TIWiPhoneEmailLabel, TIWiPhoneLocationLabel, TIWiPhonePhoneLabel and
TIWiPhoneSMSLabel. These labels look like simple labels at design-time, but can
perform a specific action at runtime.
The screenshot below has the four special labels placed on the TIWiPhoneRegion:

The TIWiPhoneEmailLabel component has string properties EmailAddress, CCAddress,
and BCCAddress to control the people receiving the e-mail, as well as a property
Subject and a TStringList property Body to contain the actual message. There are no
less than 6 possible OnAsync event handlers we can use: OnAsyncClick being the most
obvious, but also OnAsyncMouseDown, OnAsyncMouseMove, OnAsyncMouseOut,
OnAsyncMouseOver and OnAsyncMouseUp.
Even if we do not implement any of these on Async events, if we click on the label at
runtime it will automatically start the email application on the iPhone with the values we
entered for the properties.

TIWiPhoneLocationLabel has Destination, DestinationLatitude, DestinationLongitude,
Location, Latitude, and Longitude properties.

The TIWiPhonePhonelabel has a TelephoneNumber property and will automatically make
a phone call when you click on the label at runtime.

The TIWiPhoneSMSLabel has a SMSNumber property and will automatically start the
SMS application on the iPhone to send an SMS message.

Note that neither of these special labels appear to work in the iPhone Simulator on the
Mac, but they work just fine on a real iPhone. They may have limited functionality on
the iPad and iPod Touch (who generally cannot phone or send SMS messages, but may
be able to send e-mail messages if a wifi connection is active, and they may also be
able to use the Location link).

Delphi Win32 Web Development 9. IntraWeb Custom Components

Bob Swart (Bob@eBob42.com) - 92 - February 2011

When clicking on the Email label for example, the default email application of the iPhone
will start.

Of course, we can also tilt the iPhone and allow the page to be displayed in horizontal
orientation.

This will automatically happen, without any required coding from our side. Of course, it
may be a good idea to make sure all controls will remain visible. In case of a normal
TIWiPhoneRegion, this may not happen at all times. In that case, it may be wise to start
using a TIWiPhoneScrollRegion, which is a IWiPhoneRegion control that offers iPhone
style scrolling and a scroll indicator. The Header and Footer will remain fixed!

Delphi Win32 Web Development 9. IntraWeb Custom Components

 Bob Swart Training & Consultancy - 93 - www.drbob42.com

Two TMS iPhone controls that haven’t been used yet are the TIWIPhoneOnOffButton and
the TIWiPhoneTrackbar component. We can place them on the TIWiPhoneRegion control
to view them in action. Note that the design-time look is much simpler than the runtime
look. The TIWiPhoneOnOffButton component has both an OnButtonClick and an
asynchronous OnAsyncButtonClick event that we can respond to. Usually, this button is
used to enable or disable options in a settings page of the iPhone application. However,
we can also use it to demonstrate another control that we haven’t covered, yet, the
TIWiPhonePageFlip component, which can be used to flip from one Region to another.

Place a TTIWiPhonePageFlip component on the form, set the align property to alClient,
and then we can use the FrontRegion and BackRegion properties to assign two different
TIWiPhoneRegion controls to it.
As example second region, place another TIWiPhoneRegion component on the form, and
put a TIWiPhoneHeader control on it (which will automatically move to the top) followed
by a TIWiPhoneMenu control.
The TIWiPhoneMenu control will be placed at the bottom of the new region, and can be
used to display menu items. We can use the Items property to add a collection of
TiPhoneMenuItems, each with a Caption, Image, IndicatorCaption, IndicatorVisible, and
SelectedImage property. Adding three menu items, the form designer could now
resemble the following layout (with the new TIWiPhoneOnOffButton, TIWiPhoneTrackbar
as well as a new TIWiPhoneRegion on the right with a header and an TIWiPhoneMenu
control).

In order to demonstrate the power and ease of use of the TIWiPhonePageFlip control,
we can implementing the slding between the front region and the back region. First of
all, the actual sliding technique itself can be controlled by the AnomationType property,
which by default is set to atSlide, but can also be atDrop, atFlip, atSwing or atTurn. The
AnomationSpeed controls the speed that it takes for the animation to be shown; by
default 500 ms.
In order to switch from Front to Back, we can call the TIWIPhonePageFlip1.SlideToBack
method. And in a similar way, to get back to the Front, we can call the SlideToFront
method.

Delphi Win32 Web Development 9. IntraWeb Custom Components

Bob Swart (Bob@eBob42.com) - 94 - February 2011

Just for fun, we can make sure that the TIWiPhoneOnOffButton will slide to the second
region when we set the button to “On” , and the Back button on the Header of the
secong region will slide back to the first region. These two event handlers were
implemented as follows:

procedure TIWFormBlog.TIWIPhoneHeader2AsyncLeftButtonClick(Sender: TObject;
 EventParams: TStringList);
begin
 TIWIPhonePageFlip1.SlideToFront
end;

procedure TIWFormBlog.TIWIPhoneOnOffButton1AsyncButtonClick(Sender: TObject;
 EventParams: TStringList);
begin
 if TIWiPhoneOnOffButton1.ButtonState = bsOn then
 TIWIPhonePageFlip1.SlideToBack
end;

The result can be seen below, where the left screenshot was taken just before I clicked
on the “Off” button to switch it to “On” and slide the right screenshot in (which is still
empty, but also shows the iPhone Menu instead of the Footer).

We can also respond to the menu item events on the second region, which is done in a
single event if the menu itself, passing the ItemIndex of the button that was clicked
(starting to count from 0).

procedure TIWFormBlog.TIWIPhoneMenu1ItemClick(Sender: TComponent;
 ItemIndex: Integer);
begin

end;

I leave it as exercise for the reader to come up with a nice implementation of the menu
options here.

Delphi Win32 Web Development 9. IntraWeb Custom Components

 Bob Swart Training & Consultancy - 95 - www.drbob42.com

Registered Users
There is one last TMS iPhone control that we haven’t covered, yet: the TIWiPhoneList
which can show a list ot items, like a listbox, but with support for not only a single line
of text, but also a subtext, a number, an image and some detailed notes. Using the
demo so far, we can place a TIWiPhoneList control in the secont TIWiPhoneRegion and
prepare to fill it with the list of registered users for an event for example.
This particular example is using the Advantage Database Server with the Registration
table in the EVENT.ADD data dictionary (with alias “Events” in the ADS.INI file). So we
need an TAdsConnection component to connect to the Event alias, setting AliasName to
Events, and the LoginPrompt to False.
A TAdsQuery component is needed to connect its AdsConnection property, and enter the
SQL command “SELECT FirstName, LastName, City, Country, Email FROM Registration”,
which returns the following in the SQL Editor:

Since this list won’t change while loading and presenting the form, we can build the
TIWiPhoneList in the OnCreate event of the IntraWeb Form, as follows:

procedure TIWFormBlog.IWAppFormCreate(Sender: TObject);
begin
 ADSQuery1.Open;
 ADSQuery1.First;
 while not ADSQuery1.Eof do
 begin
 with TIWIPhoneList1.Items.Add do
 begin
 Caption := ADSQuery1.FieldByName('FirstName'). AsString + #32 +
 ADSQuery1.FieldByName('LastName'). AsString;
 Value := ADSQuery1.FieldByName('City').AsString;
// Image := DataSource1.DataSet.FieldByName('Country').Value + '.png';
 end;
 ADSQuery1.Next;
 end;
end;

And the result, when running in the iPhone Simulator, is the list of registered users.

Delphi Win32 Web Development 9. IntraWeb Custom Components

Bob Swart (Bob@eBob42.com) - 96 - February 2011

Another example of an IntraWeb iPhone application is the iPhone edition of my weblog
which can be found at http://www.bobswart.nl/iblog

Summary
In this section, I’ve covered the TMS IntraWeb iPhone Controls pack, a third-party add-
on for IntraWeb to allow us to quickly and easily create web applications in the iPhone
style (but also for the iPad and iPod Touch).
The TMS IntraWeb iPhone controls pack is available as separate purchase, or as part of
the full TMS IntraWeb Component Studio.

Delphi Win32 Web Development 9. IntraWeb Custom Components

 Bob Swart Training & Consultancy - 97 - www.drbob42.com

6. IntraWeb Custom Components
IntraWeb developers are not limited to using only the IntraWeb components that are
delivered with the product. There are also third-party vendors like TMS and Arcana
(which has been turned into Open Source in 2008).
We can also write our own IntraWeb custom components, and in this section we will
examine how writing and using IntraWeb custom components can be done.

IntraWeb Controls
As an example, let's take a look at the unit IWCompLabel.pas, which contains both the
TIWCustomLabel and TIWLabel components.
As you can see, the TIWCustomLabel component is derived from TIWControl, which is
the parent class of all IntraWeb components. From the TIWControl, we must at least
override the Create constructor as well as the RenderHTML function. The later is
responsible for producing the HTML that is rendered when the component is shown
inside the browser.

unit IWCompLabel;
interface
uses
{$IFDEF Linux}QGraphics, {$ELSE}Graphics, {$ENDIF}
{$IFDEF Linux}QControls, {$ELSE}Controls, {$ENDIF}
 Classes,
 IWControl, IWHTMLTag;

type
 TIWCustomLabel = class(TIWControl)
 protected
 FRawText: Boolean;
 procedure SetAutoSize(Value: Boolean); override;
 public
 constructor Create(AOwner: TComponent); override;
 function RenderHTML: TIWHTMLTag; override;
 //
 property AutoSize;
 property RawText: Boolean read FRawText write FRawText default True;
 published
 property Font;
 end;

type
 TIWLabel = class(TIWCustomLabel)
 published
 property AutoSize;
 property Caption;
 property RawText;
 end;

implementation
uses
 SysUtils;

function TIWCustomLabel.RenderHTML: TIWHTMLTag;
begin
 Result := TIWHTMLTag.CreateTag('SPAN');
 try
 if not RawText then

Delphi Win32 Web Development 9. IntraWeb Custom Components

Bob Swart (Bob@eBob42.com) - 98 - February 2011

 Result.Contents.AddText(TextToHTML(Caption))
 else
 Result.Contents.AddText(Caption);
 except
 FreeAndNil(Result);
 raise
 end
end;

constructor TIWCustomLabel.Create(AOwner: TComponent);
begin
 inherited Create(AOwner);
 Height := 21;
 Width := 121;
 AutoSize := true;
 FRawText := true
end;

procedure TIWCustomLabel.SetAutoSize(Value: Boolean);
begin
 inherited SetAutoSize(Value);
 Invalidate
end;

end.

Note the TextToHTML method that is used in case the RawText property is set to False.
Of course, the TIWLabel component also needs to be registered as component in Delphi,
using the RegisterComponents function. But far more important than this last step, is
the registration of the so-called paint handler for the IntraWeb control.
While the RenderHTML method is used to produce the HTML at run-time, the paint
handlers give the IntraWeb components the ability to draw themselves at design-time.
The unit IWDsnPaint.pas contains the base classes for the paint handlers, and the unit
IWDsnPaintHandlers contains the definition for all IntraWeb paint handlers, including
the one for the TIWLabel, namely TIWPaingHandlerLabel, which is derived from the
base class TIWPaintHandlerDsn and defined as follows:

type
 TIWPaintHandlerLabel = class(TIWPaintHandlerDsn)
 public
 procedure Paint; override;
 end;

The implementation of the Paint method can be as follows (this is just used to illustrate
how a paint method from a specific TIWPaintHandler is implemented):

procedure TIWPaintHandlerLabel.Paint;
var
 LWidth: Integer;
 LLabel: TIWCustomLabel;
 LLeft: Integer;
begin
 LLabel := FControl as TIWCustomLabel;
 with FControl.Canvas do
 begin
 Brush.Style := bsClear;
 if LLabel.Color <> clNone then
 Brush.Color := LLabel.Color;
 SetCanvasFont(LLabel.Font);

Delphi Win32 Web Development 9. IntraWeb Custom Components

 Bob Swart Training & Consultancy - 99 - www.drbob42.com

 if LLabel.Align = alNone then
 begin
 if LLabel.AutoSize then
 LWidth := Trunc(TextWidth(LLabel.Caption) * 1.10)
 else
 LWidth := LLabel.Width
 end
 else LWidth := LLabel.Width;
 LLeft := 0;
 if not LLabel.AutoSize then
 begin
 case LLabel.Alignment of
 taLeftJustify: LLeft := 0;
 taCenter: LLeft := (LWidth div 2) –
 (TextWidth(LLabel.Caption) div 2);
 taRightJustify: LLeft := LWidth - TextWidth(LLabel.Caption)
 end
 end;
 TextRect(Rect(LLeft,0,LWidth,TextHeight(LLabel.Caption)),
 LLeft,0,LLabel.Caption);
 if (LLabel.Align = alNone) and LLabel.AutoSize then
 begin
 LLabel.Width := LWidth;
 LLabel.Height := TextHeight(LLabel.Caption)
 end
 end
end;

And finally, in order to "connect" the TIWPaintHandlerLabel to the TIWLabel IntraWeb
component, we have to call the IWRegisterPaintHandler method in the initialization
section of the unit, as follows:

 IWRegisterPaintHandler('TIWLabel', TIWPaintHandlerLabel);

Custom Components
Now that we’ve examined the TIWLabel component, it’s time to create our own custom
IntraWeb components. We have basically two choices when it comes to building custom
IntraWeb components: either start with an existing component, one that already has a
design-time paint handler defined, or start with one of the "custom" parent classes, and
make sure not to forget your own design-time paint handler.
As simple TIWCustomLabel derived component, we can do this:

unit IWHelloWorld;
interface
uses
 Classes, IWCompLabel;

type
 TIWHelloWorld = class(TIWCustomLabel)
 public
 constructor Create(AOwner: TComponent); override;
 end;

 procedure Register;

implementation
uses
 IWDsnPaintHandlers, IWBaseControl;

Delphi Win32 Web Development 9. IntraWeb Custom Components

Bob Swart (Bob@eBob42.com) - 100 - February 2011

constructor TIWHelloWorld.Create(AOwner: TComponent);
begin
 inherited;
 Text := 'Hello, IntraWeb World';
end;

procedure Register;
begin
 RegisterComponents('IW Custom', [TIWHelloWorld])
end;

initialization
 IWRegisterPaintHandler('TIWHelloWorld', TIWPaintHandlerLabel);
end.

However, while this component installs fine, and can be used just fine at design-time,
we'll get compiler errors (or rather linker errors) when we try to compile an application
using the IWHelloWorld component.
This is caused by the fact that the design-time paint handlers should only be included at
design-time, and not in the run-time code for the components. In short, our IntraWeb
component source code should be split in two parts: the run-time section, and the
design-time section.

Packages
In order to handle and contain the different run-time and design-time parts, we need
two packages: a run-time package and an associated design-time package.
In order to start a new Delphi Package project, do File | New – Other, and select the
Package icon from the Delphi Projects category in the Object Repository:

This will start a new package project, that we can save in eBob42IW.dproj. This package
already has one item in the requires node: the rtl.dcp package. In order to derive from

Delphi Win32 Web Development 9. IntraWeb Custom Components

 Bob Swart Training & Consultancy - 101 - www.drbob42.com

existing IntraWeb components (or use existing IntraWeb types), we must also add the
IntraWeb run-time package to the requires node as well. For IntraWeb XI and Delphi XE
that’s the IntraWeb_110_150.bpl run-time package, which can be found on your
machine in the Windows\System32 directory. Note that there is also a
IntraWebDB_110_150. bpl package with the database controls. Finally, there is a
dclIntraWeb_110_150.bpl (in the C:\Documents and Settings\$USERNAME\Application
Data\IntraWeb XI\LibXE directory, but that’s a design-time package that contains the
design-time functionality.
Using the same name pattern, we can create another package – a design-time package
– with the name dcleBob42IW.dproj, and add the dclIntraWeb_110_150.dcp design-
time package to its requires node. From now on, we can put the run-time functionality
in the eBob42IW package and the design-time functionality in the dcleBob42 package.
The TIWHelloWorld component can now be split into two files: TIWHelloWorld.pas for
the run-time code, and TIWDsnHelloWorld.pas for the design-time support of the
TIWHelloWorld component.
The unit IWHelloWorld.pas has the following contents:

unit IWHelloWorld;
interface
uses
 Classes, IWCompLabel;

type
 TIWHelloWorld = class(TIWCustomLabel)
 public
 constructor Create(AOwner: TComponent); override;
 end;

implementation

constructor TIWHelloWorld.Create(AOwner: TComponent);
begin
 inherited;
 Text := 'Hello, IntraWeb World';
end;

end.

With the design-time registration unit IWDsnHelloWorld.pas as follows:

unit IWDsnHelloWorld;
interface
uses
 Classes, IWHelloWorld;

 procedure Register;

implementation
uses
 IWDsnPaintHandlers, IWBaseControl;

procedure Register;
begin
 RegisterComponents('IW Custom', [TIWHelloWorld])
end;

initialization
 IWRegisterPaintHandler('TIWHelloWorld', TIWPaintHandlerLabel);
end.

Delphi Win32 Web Development 9. IntraWeb Custom Components

Bob Swart (Bob@eBob42.com) - 102 - February 2011

We can add both to their corresponding package, which results in the following overview
for the run-time and design-time packages (see next page).

TIEuroComboBox
Existing IntraWeb components are easy to inherit from, like for example a
TIWComboBox or TIWCustomComboBox component that gets extended by making sure
it's pre-filled with items. This technique can be used to produce a TIWEuroCurrencies
combobox (to select the 12 participating Euro currencies that can be converted to Euros
and back), which is implemented as follows:

unit IWEuroComboBox;
interface
uses
 Classes, IWCompListBox, IWCompListBox32;

type
 TIWEuroComboBox32 = class(TIWCustomComboBox32)
 public
 constructor Create(AOwner: TComponent); override;
 published
 property ItemIndex;
 property Items;
 end;

Delphi Win32 Web Development 9. IntraWeb Custom Components

 Bob Swart Training & Consultancy - 103 - www.drbob42.com

 TIWEuroComboBox = class(TIWCustomComboBox)
 public
 constructor Create(AOwner: TComponent); override;
 published
 property ItemIndex;
 property Items;
 end;

implementation

constructor TIWEuroComboBox32.Create(AOwner: TComponent);
begin
 inherited;
 Items.Add('Euro'); // 1.0000
 Items.Add('ATS'); // 13.7603
 Items.Add('BEF'); // 40.3399
 Items.Add('DEM'); // 1.95583
 Items.Add('ESP'); // 166.386
 Items.Add('FIM'); // 5.94573
 Items.Add('FRF'); // 6.55957
 Items.Add('GRO'); // 340.750
 Items.Add('IEP'); // 0.787564
 Items.Add('ITL'); // 1936.27
 Items.Add('LUF'); // 40.3399
 Items.Add('NLG'); // 2.20371
 Items.Add('PTE'); // 200.482
 ItemIndex := 0 // Euro
end;

constructor TIWEuroComboBox.Create(AOwner: TComponent);
begin
 inherited;
 Items.Add('Euro'); // 1.0000
 Items.Add('ATS'); // 13.7603
 Items.Add('BEF'); // 40.3399
 Items.Add('DEM'); // 1.95583
 Items.Add('ESP'); // 166.386
 Items.Add('FIM'); // 5.94573
 Items.Add('FRF'); // 6.55957
 Items.Add('GRO'); // 340.750
 Items.Add('IEP'); // 0.787564
 Items.Add('ITL'); // 1936.27
 Items.Add('LUF'); // 40.3399
 Items.Add('NLG'); // 2.20371
 Items.Add('PTE'); // 200.482
 ItemIndex := 0 // Euro
end;

Again, we need to register the design-time paint handler, since we derived from
TIWCustomComboBox32 instead of - for example - the TIWComboBox32 itself (which
already has a paint handler defined, so we can use that one).

unit IWDsnEuroComboBox;
interface
uses
 Classes, IWEuroComboBox;

 procedure Register;

implementation
uses
 IWDsnPaintHandlers, IWBaseControl;

Delphi Win32 Web Development 9. IntraWeb Custom Components

Bob Swart (Bob@eBob42.com) - 104 - February 2011

procedure Register;
begin
 RegisterComponents('IW Custom 32', [TIWEuroComboBox32]);
 RegisterComponents('IW Custom', [TIWEuroComboBox])
end;

initialization
 IWRegisterPaintHandler('TIWEuroComboBox32', TIWPaintHandlerComboBox32);
 IWRegisterPaintHandler('TIWEuroComboBox', TIWPaintHandlerComboBox)
end.

TIWRequiredEdit
As last example of an IntraWeb custom component, I want to derive a new TIWEdit
control, this time from the regular TIWEdit (and not the TIWCustomEdit), and
implement a warning message that will be shown when the user wants to leave the edit
without entering a value (i.e. this will result in a so-called "required edit", and hence the
name TIWRequiredEdit). The warning is implemented by adding an OnBlur event that
will check the contents, and if empty will show the warning.

This custom IntraWeb component is implemented as follows:

unit IWRequiredEdit;
interface
uses
 Classes, IWCompEdit, IWScriptEvents;

type
 TIWRequiredEdit = class(TIWEdit)
 private
 FWarningMessage: String;
 protected
 procedure HookEvents(AScriptEvents: TIWScriptEvents); override;
 public
 constructor Create(AOWner: TComponent); override;
 published
 property WarningMessage: String
 read FWarningMessage write FWarningMessage;
 end;

implementation

constructor TIWRequiredEdit.Create(AOWner: TComponent);
begin
 inherited;
 FWarningMessage := 'Warning: a value is required.'
end;

procedure TIWRequiredEdit.HookEvents(AScriptEvents: TIWScriptEvents);
var
 Required: String;
begin
 inherited HookEvents(AScriptEvents);
 Required := 'if (this.value == '''') { alert(''' + FWarningMessage + ''') }';
 AScriptEvents.HookEvent('onBlur', Required)
end;

end.

Delphi Win32 Web Development 9. IntraWeb Custom Components

 Bob Swart Training & Consultancy - 105 - www.drbob42.com

Note that this time we don't have to implement a paint handler, since the
TIWRequiredEdit will simply use the already registered paint handler of its parent
control the TIWEdit.
But you still want to keep the Register routine in a separate unit anyway, which is
implemented as follows:

unit IWDsnRequiredEdit;
interface
uses
 Classes, IWRequiredEdit;

 procedure Register;

implementation

procedure Register;
begin
 RegisterComponents('IW Custom', [TIWRequiredEdit])
end;

end.

Installation and Usage
You can add the IWDsnXXX units to a package and install the components in the Delphi
Tool Palette. When you place a component on an IntraWeb Application Form, only the
run-time code will be linked with your application.

Summary
In this section, I’ve demonstrated how to create and deploy IntraWeb custom
components using Delphi.

Delphi Win32 Web Development 10. IntraWeb Testing Framework

 Bob Swart Training & Consultancy - 107 - www.drbob42.com

7. IntraWeb Testing Framework
Apart from writing web applications, IntraWeb 9 also includes support for unit
testing which can be a great help in testing the output and result of your
IntraWeb applications.

Sample Application
In order to demonstrate this unit testing behaviour, we should first create a simple
IntraWeb application that does something – like a temperature conversion application –
and then add the tests to it.
Using IntraWeb XI, use the VCL for the Web Application Wizard to create a new VCL for
the Web application, with TempDemo as the project name.

Click OK to create the new VCL for the Web application. The new project will be called
TempDemo, and contains a UserSessionUnit, ServerController unit as well as a Unit with
the main form. Save the latter in MainForm.pas, and place two TIWEdits and two
TIWButton control on it.

Rename the two TIWEdit controls to iwedFahrenheit and iwedCelsius, and rename the
two TIWButton controls to iwbtnFahrenheit2Celsius and iwbtnCelsius2Fahrenheit (and
don’t forget to change their Caption property accordingly).

Delphi Win32 Web Development 10. IntraWeb Testing Framework

Bob Swart (Bob@eBob42.com) - 108 - February 2011

Note that the TIWEdits should be limited to numerical input only. This can be enforced
in several ways, but is left as exercise for the reader. In the code below, I will use the
built-in StrToFloatDef to convert the contents of the TIWEdit to a double, using 0 as
default value if the contents is not a valid floating point value.

With this in mind, we can now implement the actual temperature conversion in the two
OnClick events of the buttons, as follows:

procedure TIWForm4.iwbtnCelsius2FahrenheitClick(Sender: TObject);
begin
 iwedFahrenheit.Text := FloatToStr(32 +
 9 * StrToFloatDef(iwedCelsius.Text, 0) / 5);
end;

procedure TIWForm4.iwbtnFahrenheit2CelsiusClick(Sender: TObject);
begin
 iwedCelsius.Text := FloatToStr(
 5 * (StrToFloatDef(iwedFahrenheit.Text, 0)-32) / 9);
end;

As basis for the code above, I’ve used the rule that degrees Fahrenheit are equal to 32
+ the degrees in Celsius multiplied by 9/5. This code should perform the temperature
conversion, but with code like this it’s important to test the results in order to make
sure I didn’t accidentally forgot some brackets or replaced a multiplication by a division.

Manual Test
As a little test, I always convert 68 degrees Fahrenheit to 20 degrees Celsius (and
back). And we can enter these values in the browser to verify the OnClick event
handlers I’ve implemented.

While this test is easy to perform, it would be a good idea to automate the test and to
include some other test values as well (like 50:10), to ensure that I really correctly
implemented the calculations behind the buttons.

Delphi Win32 Web Development 10. IntraWeb Testing Framework

 Bob Swart Training & Consultancy - 109 - www.drbob42.com

For this and especially for more complex real-world examples, it’s good to know that we
can now use the IntraWeb Testing Framework to automate these tests, as I’ll now
demonstrate in the remainder of this section.

VCL for the Web Test Project
There are two ways to create a VCL for the Web Test Project. Either using File | New, or
– in my view a better way – using the Add New Project option of the Project Manager.
The former will create a new VCL for the Web DUnit Test Project, but without a
reference to the VCL for the Web application you’ve just been working on. The latter will
add a new VCL for the Web DUnit Test Project to the existing project group which makes
it easier to allow the test project to work on the files from your original VCL for the Web
project.
So, in the Project Manager, right-click on the ProjectGroup node and select Add New
Project which will show the Object Repository again, where we can select the New DUnit
Test Project icon from the VCL for the Web category:

After you double-click on the New DUnit Test Project, you will not get a Wizard (like the
normal DUnit test project in Delphi), but just a new project by default called Project1
with a test unit in Unit1.pas.

Personally, I prefer to keep my test project close to the actual project I’m testing. Like
the normal Dunit Test Project Wizard in Delphi, my preferred location for the test
project is the Test subdirectory of the actual project. Given that the TempDemo project
was saved in my Projects\TempDemo directory, this means that the DUnit test project
and test unit should be saved in the Projects\TempDemo\Test directory. I’ve saved the
test project as TempDemoTest and the test unit as MainFormTest (in both cases I’ve
used the original filename and added “Test” to it).

Delphi Win32 Web Development 10. IntraWeb Testing Framework

Bob Swart (Bob@eBob42.com) - 110 - February 2011

Sharing Main Form
The next step is an important one: in order to allow the test project to actually test the
MainForm from the original project, we need to add unit MainForm to the test project.
This can be done in the Project Manager again: right-click on the TempDemoTest project
and select Add. In the dialog that follows, navigate to the parent directory (where the
TempDemo project is located) and select the MainForm.pas unit.
Apart from the MainForm, however, we must also add the ServerController.pas and the
UserSessionUnit.pas from the original IntraWeb TempDemo project to the
TempDemoTest project. As a result, the Project Manager will have the following layout
(note the shared files in the .. directory):

This will ensure that the DUnit test project shares the exact same units with the original
TempDemo project, while the MainFormTest unit is the only new one, where the test
code can be placed.

Writing Test Code
The next step involves writing test code for the MainForm. This can be done in the
corresponding MainFormTest unit. First, add MainForm to the uses clause of
MainFormTest, so the TIWForm type it can be used.
The unit MainFormTest contains the TIWTestCase class, which defines the Test method
(only one, but we can add more if we want), as well as a SetUp and TearDown method,
as follows:

type
 TIWTestCase1 = class(TTestCase)
 private
 protected
 procedure SetUp; override;
 procedure TearDown; override;
 published
 {$IFDEF CLR}[Test]{$ENDIF}
 procedure Test;
 end;

Delphi Win32 Web Development 10. IntraWeb Testing Framework

 Bob Swart Training & Consultancy - 111 - www.drbob42.com

Note that we do not have to create an instance of our IntraWeb main form in the SetUp
method (nor do we have to destroy it in the TearDown method). The SetUp and
TearDown methods can be used for other things, like setting up a global lookup table or
logfile. We do need to add MainForm to the uses clause of the MainFormTest unit,
however.
Also note the [Test] attribute which is required in the .NET edition of the unit test.
Although IntraWeb XE no longer supports .NET, this code is still present as witness of
the previous support for both Win32 and .NET.
Inside the Test method, we can get our hands on an instance of the main form with the
following code snippet which is part of the comments inside the Test method:

 with NewSession do
 try
 with MainForm as TIWFormXXX do
 begin
 ...
 end
 finally
 Free
 end

The call to NewSession will create a new session where we can access the MainForm.
TIWFormXXX is the actual type of the main form we want to test, and is the type for
which the SetAsMainForm method is called (in our case that’s TIWForm1).

Since I prefer not to use (too many) with statements, the implementation of my Test
method is slightly different. I’m using a MyForm variable to place the instance of
TIWForm1 in, and use the MyForm to access the controls (like iwedFahrenheit and
iwedCelsius) and submit the buttons like iwbtnFahrenheit2Celsius.
The test is simple: I assign a text value of ‘60’ tp the iwedFahrenheit.Text property and
then call the Submit method of the main form, passing the iwbtnFahrenheit2Celsius as
argument. This will have the same effect as pressing the iwbtnFahrenheit2Celsius
button in the browser, and as a result we can check the resulting value of the
iwedCelsius.Text property, which should be 20.

procedure TIWTestCase1.Test;
var
 MyForm: TIWForm1;
begin
 with NewSession do
 try
 MyForm := MainForm as TIWForm1;
 MyForm.iwedFahrenheit.Text := '68';
 MyForm.Submit(MyForm.iwbtnFahrenheit2Celsius);
 Check(MyForm.iwedCelsius.Text = '20',
 '68 Fahrenheit should be 20 Celsius');
 finally
 Free;
 end;
end;

If we compile and run the TempDemoTest application, we get a Runtime error 217,
however.

Delphi Win32 Web Development 10. IntraWeb Testing Framework

Bob Swart (Bob@eBob42.com) - 112 - February 2011

For some reason, there is a problem with the generated IntraWeb Test Project, and I’ve
been unable to pinpoint the exact location of the problem.
As a workaround, we can remove the IntraWeb DUnit test project, and just create a
genuine Test Project from the Unit Test category in the Object Repository:

Select TempDemo as source project to generate the tests for.

Delphi Win32 Web Development 10. IntraWeb Testing Framework

 Bob Swart Training & Consultancy - 113 - www.drbob42.com

In the second step of the Wizard, we can select a GUI project (note that we can always
switch to a CONSOLE test runner later).

This will create an empty TempDemoTests project in the Test directory. We can add the
MainFormTest.pas unit to it, as well as the MainForm itself, but it would be more
instructive to see how we can add new tests for other IntraWeb forms as well. So add a
Test Case from the Unit Test category in the Object Repository.

Delphi Win32 Web Development 10. IntraWeb Testing Framework

Bob Swart (Bob@eBob42.com) - 114 - February 2011

WE can now select the source files in the project directory. Make sure to select the
MainForm.pas file, the one with the two events handlers btnCelsius2FahrenheitClick and
Fahrenheit2CelsiusClick.

We can mark the methods we want to test, and then specify the target source file and
base class:

Delphi Win32 Web Development 10. IntraWeb Testing Framework

 Bob Swart Training & Consultancy - 115 - www.drbob42.com

We should now have a TestMainForm.pas unit added to the test project, as well as the
MainForm.pas unit (but not the .dfm file).

There are two test methods, which right now only consist of a call to the
btnFahrenheit2CelsiusClick or btnCelsius2FahrenheitClick event handlers. We should
modify them as follows:

procedure TestTIWForm1.TestbtnCelsius2FahrenheitClick;
begin
 FIWForm1.iwedFahrenheit.Text := '68';
 // TODO: Setup method call parameters
 FIWForm1.Submit(FIWForm1.btnFahrenheit2Celsius);
 // TODO: Validate method results
 Check(FIWForm1.iwedCelsius.Text = '20',
 '68 Fahrenheit should be 20 Celsius');
end;

procedure TestTIWForm1.TestbtnFahrenheit2CelsiusClick;
begin
 FIWForm1.iwedCelsius.Text := '20';
 // TODO: Setup method call parameters
 FIWForm1.Submit(FIWForm1.btnCelsius2Fahrenheit);
 // TODO: Validate method results
 Check(FIWForm1.iwedFahrenheit.Text = '68',
 20 Celsius should be 68 Fahrenheit');
end;

These two test methods verify that 68 degrees Fahrenheit gets converted to 20 degrees
Celsius (first method) and back again (second method).

If we run this test project, we see the two tests appear in the DUnit framework:

Delphi Win32 Web Development 10. IntraWeb Testing Framework

Bob Swart (Bob@eBob42.com) - 116 - February 2011

However, running the tests will give an exception, which is caused by the fact that the
IW Application itself is not property initialized.

Since our DUnit test project is a “generic” DUnit test project, and not one specific for
IntraWeb, we forgot to correctly initialize the IntraWeb application. In order to fix that,
we need to Open main project file, and add two units to the uses clause:

 IWInit,
 IWGlobal,

And also add one line of code before the usual

 if IsConsole then
 with TextTestRunner.RunRegisteredTests do
 Free
 else
 GUITestRunner.RunRegisteredTests;

That’s

 GAppModeInit(Application);

The above single line of code will initialize the IntraWeb application for unit testing.

After that, we can compile and run the DUnit application framework again.

Delphi Win32 Web Development 10. IntraWeb Testing Framework

 Bob Swart Training & Consultancy - 117 - www.drbob42.com

For the two tests that we’ve implemented, the result will be a green light (meaning a
successful test). We can click on the green arrow or select the Test Tree | Run Selected
Test (F8) option to run all checked tests – in this case just the one test.

If a test fails, we’ll see a pink/purple colour as well as the text that was specified as
second argument of the Check method. So apart from the test success / failure, you’ll
also get more details about the actual failure.

As an additional benefit: once a test has been implemented, it will never go away. And
you can re-run the same test later (especially handy if you decide to change the
implementation of the OnClick methods of the button in order to archive a better
performance or perhaps for some other reason). Existing tests can be re-run just by
running the DUnit test application again. Compared to running the original application in
the browser and entering all test values and clicking on all buttons again, this is a very
convenient way to ensure there is no regression or new bugs that have crept into the
application.

More Tests
If you want to add more tests – which is always a good idea – you only need to add a
new public method to the TIWTestCase class, and implement it.

For example, to ensure that 10 degrees Celsius converts to 50 degrees Fahrenheit, I
could add a Test2 method with the following implementation:

Delphi Win32 Web Development 10. IntraWeb Testing Framework

Bob Swart (Bob@eBob42.com) - 118 - February 2011

procedure TIWTestCase1.Test2;
begin
 FIWForm1.iwedCelsius.Text := '10';
 // TODO: Setup method call parameters
 FIWForm1.Submit(FIWForm1.btnCelsius2Fahrenheit);
 // TODO: Validate method results
 Check(FIWForm1.iwedFahrenheit.Text = '50',
 '10 Celsius should be 50 Fahrenheit');
end;

And this also results in green lights for a successful test:

I leave it as exercise for the reader to implement a test which will fail (hint: you can
either make sure the OnClick event of the original application is incorrect, or add a
check in the test form which expects an incorrect result.

ITestSuite
Note that all our public test methods are automatically picked up and displayed in the
DUnit test application. This is done behind the scenes by the single line of code in the
initialization section of the MainFormTest unit:

initialization
 RegisterTest(TestTIWForm1.Suite);
end.

Delphi Win32 Web Development 10. IntraWeb Testing Framework

 Bob Swart Training & Consultancy - 119 - www.drbob42.com

It is, however, also possible to explicitly register the Test methods that you want to run,
using a function that returns the ITestSuite interface, as follows:

function Suite: ITestSuite;
begin
 Result := TTestSuite.Create('Temperature Conversion Tests');
 Result.AddTest(TIWTestCase1.Create('Test'));
 Result.AddTest(TIWTestCase1.Create('Test2'));
 ...
end;

initialization
 RegisterTest('Temp Tests', {TestTIWForm1.} Suite);
end.

Note that instead of calling TIWTestCase1.Suite (the implicit ITestSuite that is
generated by the TIWTestCase1 class itself), we then have to call the global function
Suite which contains the information as well as the list of Test methods we want to
display inside the DUnit test application. Using comments or IFDEFs you can then easily
enable or disable tests.

Summary
In this section I’ve described and demonstrated how we can use the VCL for the Web
DUnit test framework to add tests to our VCL for the Web applications. An important
benefit of using a separate test application is that the original VCL for the Web
application remains unchanged, so you do not introduce strange behaviour (like the fact
that a bug no longer exists after you add test or debug code). The biggest benefit of
using the DUnit test framework, however, is the fact that you only have to write the
test once, and can run and re-run the test several times, including months or years
later, in order to verify that a certain piece of functionality is still working as it should
be.

Delphi Win32 Web Development 11. IntraWeb Deployment

 Bob Swart Training & Consultancy - 121 - www.drbob42.com

8. IntraWeb Deployment
So far, all examples in this VCL for the Web / IntraWeb courseware manual have
started the web application as a stand-alone executable. Which is the easiest
way to start, and also the best way to debug your web application. However,
when it comes to deployment, there may be cases when you need or want to
deploy the application in a different way.

Project Targets
When creating a new VCL for the Web application, we have a choice between different
targets: StandAlone Application or ISAPI Extension.

We can easily turn the standalone application into a Windows Service, as discussed in
the first section of this courseware manual.

StandAlone Application
The StandAlone Application needs no further explanation, and has been used for most
of the examples in this courseware manual. There main advantage of the StandAlone
Application is that fact that you can run and debug it from inside the IDE. Breakpoints
and easy of debugging is a great way to allow you to find bugs or problems in your
source code.
However, when it comes to deployment of the IntraWeb application, your StandAlone
Application may need some additional configuration on the server machine which may
not always be possible. Specifically, you need to ensure that the firewall allows access
to the port number which is used by your StandAlone Application (a random port
number when using the evaluation version of IntraWeb). This is no problem on your
development machine, but may be an issue on the deployment machine, especially if
the deployment machine is managed by an ISP or hosting provider (where you do not

Delphi Win32 Web Development 11. IntraWeb Deployment

Bob Swart (Bob@eBob42.com) - 122 - February 2011

have 100% control over the web server machine – most ISPs are not happy opening up
additional ports of their firewall, for obvious reasons).
As a result, StandAlone Applications are best to deploy in environments where you have
total control over the web server yourself.

Service Application
We can turn the StandAlone Application into a Service Application by passing False to
the call of TIWStart.Execute in the main project file.

 TIWStart.Execute(False);
end.

With this setting, the application is not forced to start in GUI mode, and we can pass
the /install command line option to actually install the service:

IWDemo.exe /install

Once the IntraWeb Service application has been installed, we can start it using the
Services console of Windows. Note that for a Service Application, it’s very important to
make sure that the AppName property of the ServerController is set to a unique name.
Also, the IntraWeb Service application uses the port number as specified in the Port
property of the ServerController to communicate with the outside world, so like the
StandAlone Application you must ensure that the firewall allows incoming connections
to be made at this port number. Combined with the fact that the service must be
installed on the web server, this may means that ISPs are generally unwilling to host
IntraWeb Service applications – but they can be deployed on a web server which is
under your own control, of course. A benefit of a Windows Service applications
compared to the IntraWeb StandAlone application is the fact that the Windows Service
can get a start more of Automatic, which means that it will be started automatically
(when Windows boots) and you do not need a user to be logged on at the web server
machine (whereas the StandAlone Application of course needs a Windows session, and
hence someone to be logged on at that console).

ISAPI Extension
For deployment on a web server machine which is under the control of an ISP or other
external party, the ISAPI extension is the most suited format. For an ISAPI Extension,
the Port property of the ServerController is ignored, since the ISAPI application will be
loaded by Internet Information Service (IIS) which defines its own ports to
communicate with the outside world. By default, this is port 80 for normal and port 443
for secure connections.
The ISAPI application must be deployed in a virtual directory on the web server which
has the Execute rights enabled (also note that you may have to explicitly enable ISAPI
Extensions on the web server machine, for example on Windows Server 2003 with IIS6
or Windows Server 2008 with IIS7).
Note that the ISAPI Extension is only available for IntraWeb XI Ultimate Edition!

Multiple Project Targets
Although it’s possible to migrate the Delphi project from one type to another (for
example from the StandAlone Application to an ISAPI Extension project), this is not a
solution I would recommend. If only because once you have an ISAPI project, it may be
easier to deploy, but harder to debug.
Personally, I prefer to have the best of both world: being able to debug the StandAlone
application, install and run the Service application (when needed), or deploy the ISAPI
application on an external web server machine. This is only possible if we make sure
that all project targets share the exact same source files.

Delphi Win32 Web Development 11. IntraWeb Deployment

 Bob Swart Training & Consultancy - 123 - www.drbob42.com

Windows Server 2003
For real-world deployment on Windows Server 2003, using Microsoft Internet
Information Services (IIS) version 6, you can following the steps described here. For
deployment on Windows Server 2008 and IIS 7.1, please refer to the next section which
includes detailed steps for that situation.

Enabling ISAPI / CGI
Internet Information Services (IIS) version 6 on Windows Server 2003 explicitly
disables support for CGI or ISAPI extensions, and has to be configured to handle these
application types. In order to configure IIS, we need to start the Internet Information
Services (IIS) Manager, either directly from the Administrative Tools, or from within the
Computer Management console. The later can be started with a right-click on the My
Computer icon, but we’ll use the former (since this only shows the IIS Manager screen
in the screenshots).
In the Internet Information Services (IIS) Manager dialog, open up the local computer
node, and then select the Web Service Extensions node. This shows the known Web
Service Extensions such as CGI, ISAPI, Active Server Pages, ASP.NET 1.1, ASP.NET 2.0,
etc.
We need to select the options for All Unknown CGI Extensions and All Unknown ISAPI
Extensions, and explicitly change the status to Allowed. Both these extensions will be
disabled in IIS6 on Windows Server 2003 by defauilt, even in the Web Edition of
Windows Server 2003, so it’s important to explicitly allow them.

If you know in advance that you only need to deploy CGI executables – or ISAPI
extensions – you may decide to allow only the required extension here: either All
Unknown CGI Extensions or All Unknown ISAPI Extensions.

Once the CGI and/or ISAPI Extensions are enabled, we can create a virtual directory
where the CGI executable or ISAPI dynamic link library can be placed for deployment.

Delphi Win32 Web Development 11. IntraWeb Deployment

Bob Swart (Bob@eBob42.com) - 124 - February 2011

Virtual Directory
On Windows 2003, we need to deploy the CGI or ISAPI application in a virtual directory
that has the execute rights enabled. In the previous screenshot, open the Web Sites
node and select the web site for which you want to create the virtual directory. Then,
right-click on the web site node, and do New | Virtual Directory.

This will produce a Virtual Directory Creation Wizard that takes you through the steps to
create and configure a virtual directory.

Delphi Win32 Web Development 11. IntraWeb Deployment

 Bob Swart Training & Consultancy - 125 - www.drbob42.com

You first have to specify the alias for the virtual directory. Specify Deployment for the
example from this courseware manual (feel free to use your own name for the virtual
directory, of course, but the dialogs will use Deployment as name).

The next step is the location for the virtual directory, for which I usually pick a directory
like c:\inetpub\wwwroot\Deployment, or a subdirectory in the root of the specific web
site I’m creating this virtual directory for. Note that the directory must exist, otherwise
you will get an error message telling you it doesn’t exist.

Delphi Win32 Web Development 11. IntraWeb Deployment

Bob Swart (Bob@eBob42.com) - 126 - February 2011

The last step in the Virtual Directory Creation Wizard dialog involves setting the
permissions for the virtual directory. For ASP.NET web services, you only need to enable
Read and Run scripts (such as ASP) and no Execute, Write or Browse rights. But for CGI
executables and/or ISAPI DLLs, you need to check the Execute rights option.

When the Execute option has been set, you can continue and finish the Virtual Directory
Creation Wizard.
Once the virtual directory is created, you can right-click on the virtual directory and
select properties to continue with the configuration, allowing you to set the default
content pages (by default set to index.htm, index.html and Default.aspx for example),
but also the Directory Security settings, and the virtual directory options themselves.
The virtual directory will contain Application Settings, in our case with Application name
Deployment, using the default application pool. It’s a good idea to use a special
application pool for certain virtual directories and applications, so they do not get in the
way of other applications.

You can use the Application Pools node (just above the Web Sites node) to configure
existing application pools and/or add new ones for your virtual directories and
applications.

You can now place your CGI, ISAPI or ASP.NET projects in the new virtual directory. For
the WebServiceCGI.exe placed in the Deployment directory, the URL to call this will be
http://localhost/Deployment/WebServiceCGI.exe where you can replace localhost by the
IP-address or – even better – the DNS name of the machine. Assuming this was my
own web server, and I just created the virtual directory Deployment on the
www.bobswart.nl site, then the result would be
http://www.bobswart.nl/Deployment/WebServiceCGI.exe.
In a similar way, the WebServiceISAPI.dll can be called from the same virtual directory
with the URL http://localhost/Deployment/WebServiceISAPI.dll or with your real name
in place of the localhost.

Note that if you do not have your own web server machine, there is a good chance you
need help from your ISP in order to create the virtual directory.

Delphi Win32 Web Development 11. IntraWeb Deployment

 Bob Swart Training & Consultancy - 127 - www.drbob42.com

Deployment on Windows Server 2008 and IIS7
Windows Server 2008 comes with Internet Information Server (IIS) version 7, which
looks and feel different (and works different) compared to IIS6 on Windows Server
2003.
First of all, when working with Windows Server 2008, you have to make sure to install
Internet Information Services, and the "CGI" and/or "ISAPI Extensions" Application
Development Features.

Note that you may only need to select one of these if you decide to deploy only CGI or
ISAPI extensions instead of both types!

In the above screenshot, both CGI and ISAPI Extensions have been selected. But in
practice, you may already have decided to deploy only CGI executables, or only ISAPI
DLLs, in which case you only have to configure the CGI or ISAPI Extension options of
course.
Once IIS7 is installed correctly, and you can view http://localhost in a browser , it's
time to configure IIS and add the virtual directory.

From the Administrative Tools in the Windows’ Start menu, select the Internet
Information Services (IIS) Manager. Alternately, right-click on the My Computer icon
and select Manage. Then, inside the Server Manager dialog, open the Roles node and
select the Web Server (IIS) node. The subnode Internet Information Services (IIS)
Manager will show you the IIS Manager as well.

In the windows that follows, select your machine (WS2008 in my case), and then in the
middle of the screen select the "ISAPI and CGI Restrictions" icon (see screenshot on the
next page).

Delphi Win32 Web Development 11. IntraWeb Deployment

Bob Swart (Bob@eBob42.com) - 128 - February 2011

Double-click on the "ISAPI and CGI Restrictions" icon. In the overview that follows, click
on the "Edit Feature Settings..." action item on the right side. This gives a dialog, Edit
ISAPI and CGI Restriction Settings, and check the Allow unspecified CGI modules
and/od Allow unspecified ISAPI modules.

Once CGI and/or ISAPI Settings are possible, we can move down the tree on the left,
and select the web site where we want to deploy the application.

Delphi Win32 Web Development 11. IntraWeb Deployment

 Bob Swart Training & Consultancy - 129 - www.drbob42.com

Right-click (in this case on the Default Web Site) and select "Add Virtual Directory"

In the dialog that follows, specify the alias (Deployment in this case) as well as the
physical path.

In our case, the physical path is c:\inetpub\wwwroot\Deployment. Make sure that the
directory exists (otherwise you will get an error message).

Delphi Win32 Web Development 11. IntraWeb Deployment

Bob Swart (Bob@eBob42.com) - 130 - February 2011

When the virtual directory is created, make sure to select it in the left side of the IIS
Manager window, and then in the middle pane select the Handler Mappings.

Click on the "Edit Permissions..." action item, which changes the screen to the Handler
Mappings contents, which shows the CGI.exe and ISAPI.dll features disabled by default.

Delphi Win32 Web Development 11. IntraWeb Deployment

 Bob Swart Training & Consultancy - 131 - www.drbob42.com

Click on the "Edit Feature Permissions..." action item, and in the Edit Feature
Permissions dialog that follows check the Execute right item.

This completes the steps to enable CGI and/or ISAPI Extensions on IIS7. We can now
deploy CGI and/or ISAPI extensions in the Deployment virtual directory on the default
web site.
Note that apart from a virtual directory – which is enough for CGI or ISAPI Extensions –
you can also create an application (using the “Add Application” context menu on the
web site). This gives you a similar dialog, but with a few more options such as an
Application pool that can be used to manage the CGI and ISAPI extensions in the
application directory.

This is mainly helpful when working on ASP.NET projects by the way.

Delphi Win32 Web Development 11. IntraWeb Deployment

Bob Swart (Bob@eBob42.com) - 132 - February 2011

As result of your deployment, on either Windows Server 2003 or Windows Server 2008,
you should now be able to run the WebBrokerCGI.exe (or ISAPI DLL) from the virtual
directory on your domain (or IP-address, if you don’t have a domain registered).

Note that apart from deploying the application, you may also need to deploy the
database or change the connectionstring to the databases your WebBroker application
uses.

IntraWeb Deployment
Apart from the IntraWeb application itself – whether it’s a StandAlone, Service or ISAPI
Extension application – you often need to deploy additional files.

Files, Templates and Cache
Specifically, if you’ve have files in the Files subdirectory, then you need to deploy this
Files directory together with your IntraWeb executable.
Also, when you make use of templates, which are often placed in the Templates
subdirectory of the IntraWeb application directory, then you obviously need to deploy
the Templates directory together with your IntraWeb executable as well.
Apart from deploying the Files and Templates directories to the web server machine,
you must also ensure that the IntraWeb Application has read access to the Files and
Templates directories.
Finally, the IntraWeb application will automatically (try to) create and use a Cache
subdirectory in the IntraWeb application directory. Inside this Cache subdirectory, the
IntraWeb application must be able to create, read and delete files (i.e. Full access). If
you are unsure about the IntraWeb application being able to create the required Cache
subdirectory, then you can create it yourself (or ask your ISP to create it) and give the
required rights for this subdirectory to the IntraWeb application.

Database Drivers
When you use database access in your IntraWeb application, you may need to deploy
the required database drivers as well. I’m assuming that the database itself it already
installed and deployed, but on the web server you may need at least the database client
software in order to connect (locally or remotely) to the database. Note that it’s always
recommended to deploy the database on a different machine than your web server.
The reason is the fact that a web server is directly connected to the internet, and no
matter how secure the web server is protected, there is always a chance that the web
server machine is compromised. And if your database resides on that machine, then the
intruders will have direct access to your database (which has happened to an e-
commerce vendor who stored their clients’ information including credit card numbers in
a database on the web server – until the web server was hacked and the database with
over 15,000 credit card numbers was copied. This particular vendor will never be
honoured by a visit or purchase from me, that’s for sure).
The recommendation is to place your database on a database server behind the firewall,
connecting to the web server using a second network card, but not directly accessible
from the internet. That way people who hack the web server may still be able to access
the database (if they obtain the right credentials), but at least it’s no longer possible to
simple copy the database files.

DBX4 Drivers
Regardless of where you place the database itself, on the web server you may have to
deploy the database client software, as well as the Delphi database drivers. Especially
for dbExpress (DBX4) you will need to deploy additional files since the current
dbExpress drivers that are included with Delphi 2007 and CodeGear RAD Studio 2007 in
the box are still DBX3 drivers that cannot be linked-in with your IntraWeb executable.
Also, when you use dbExpress and TClientDataSet components, you must either deploy
the MIDAS.DLL with your IntraWeb application, or add the MidasLib unit to the uses
clause of your application in order to link the functionality inside your application.

Delphi Win32 Web Development 11. IntraWeb Deployment

 Bob Swart Training & Consultancy - 133 - www.drbob42.com

DBX Trace / Pool Connections
When we use the DBXTraceConnection or DBXPoolConnection we also have to deploy
the dbxdrivers.ini and dbxconnections.ini file. The reason is that neither of these two
delegate drivers are directly connected to a TSQLConnection component that holds their
parameters, so the DBX4 framework has no way to know what the DBXTraceConnection
consists of, for example. So far, I found no other way other than to include the
dbxdrivers.ini and dbxconnections.ini files to the list of files to deploy. The good news is
that you only need [DBXTrace] and [DBXTraceConnection] entries in the dbxdrivers.ini
and dbxconnections.ini files.

Core Lab DBX4 Drivers
Since it’s a bit of a shame that you cannot produce IntraWeb executables with the
embedded DBX4 drivers from CodeGear, let’s now examine Core Lab - one of the third-
party vendors that produces database access drivers, including dbExpress drivers for
Delphi and RAD Studio. They offer a DBX4 driver for MS SQL Server that I will use in
the example now (you can download a 30-day trial edition from the www.crlab.com
website to test it for yourself if you wish).
Once you’ve installed the dbExpress driver for SQL Server from Core Lab, you can
change the LibraryName of any TSQLConnection component in your data module from
dbxmss30.dll to dbexpsda40.dll (the DBX4 driver from Core Lab). Then, add a new
attribute DriverPackageLoader to the Params of the TSQLConnection component, and
give it the value TDbxSdaDriverLoader.

Finally, add the DbxSdaDriverLoader unit to the uses clause of your main IntraWeb
project file. You may also want to add the MidasLib unit to the uses clause, so you also
do not have to deploy the MIDAS.DLL file.

Before you can recompile the project, you must now also add the LITE;DBX40
conditional defines to the project, which can best be set in the Project Options dialog,
where you also need to make sure the Core Lab source files can be found in the search
path, by adding C:\Program Files\CoreLab\Dbx5da to the search path.

The result will be an executable with the embedded DBX4 driver loader
(DbxSdaDriverLoader) and the dbexpsda40 DBX4 driver from Core Lab for SQL Server,
that you can deploy as stand-alone ISAPI DLL.

Delphi Win32 Web Development 11. IntraWeb Deployment

Bob Swart (Bob@eBob42.com) - 134 - February 2011

Apart from DBX4 drivers for SQL Server, Core Lab also offers dbExpress drivers for
Oracle, mySQL, and InterBase/Firebird, as well as native (non-dbExpress) drivers.
Check out their website at http://www.crlab.com for more details.

Summary
In this section, I’ve explained what the different IntraWeb project targets consist of,
and what the advantages and disadvantages are when it comes to deployment. I’ve also
explained and demonstrated how to create virtual directories on Windows Server 2003
and 2008, and make them ready for IntraWeb deployment.
Finally, I’ve also covered additional files and directories required for deployment, and
paid some special attention to database drivers and the CoreLab DBX4 drivers which can
be linked-in with your IntraWeb executable.

